|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > rb-imdf | Structured version Visualization version GIF version | ||
| Description: The definition of implication, in terms of ∨ and ¬. (Contributed by Anthony Hart, 17-Aug-2011.) (Proof modification is discouraged.) (New usage is discouraged.) | 
| Ref | Expression | 
|---|---|
| rb-imdf | ⊢ ¬ (¬ (¬ (𝜑 → 𝜓) ∨ (¬ 𝜑 ∨ 𝜓)) ∨ ¬ (¬ (¬ 𝜑 ∨ 𝜓) ∨ (𝜑 → 𝜓))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | imor 853 | . 2 ⊢ ((𝜑 → 𝜓) ↔ (¬ 𝜑 ∨ 𝜓)) | |
| 2 | rb-bijust 1748 | . 2 ⊢ (((𝜑 → 𝜓) ↔ (¬ 𝜑 ∨ 𝜓)) ↔ ¬ (¬ (¬ (𝜑 → 𝜓) ∨ (¬ 𝜑 ∨ 𝜓)) ∨ ¬ (¬ (¬ 𝜑 ∨ 𝜓) ∨ (𝜑 → 𝜓)))) | |
| 3 | 1, 2 | mpbi 230 | 1 ⊢ ¬ (¬ (¬ (𝜑 → 𝜓) ∨ (¬ 𝜑 ∨ 𝜓)) ∨ ¬ (¬ (¬ 𝜑 ∨ 𝜓) ∨ (𝜑 → 𝜓))) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∨ wo 847 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 | 
| This theorem depends on definitions: df-bi 207 df-or 848 | 
| This theorem is referenced by: re1axmp 1763 re2luk1 1764 re2luk2 1765 re2luk3 1766 | 
| Copyright terms: Public domain | W3C validator |