Proof of Theorem rblem5
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | rb-ax2 1752 | . 2
⊢ (¬
(𝜑 ∨ ¬ ¬ 𝜓) ∨ (¬ ¬ 𝜓 ∨ 𝜑)) | 
| 2 |  | rb-ax4 1754 | . . . . 5
⊢ (¬
(𝜑 ∨ 𝜑) ∨ 𝜑) | 
| 3 |  | rb-ax3 1753 | . . . . 5
⊢ (¬
𝜑 ∨ (𝜑 ∨ 𝜑)) | 
| 4 | 2, 3 | rbsyl 1755 | . . . 4
⊢ (¬
𝜑 ∨ 𝜑) | 
| 5 |  | rb-ax4 1754 | . . . . . . 7
⊢ (¬
(¬ ¬ 𝜑 ∨ ¬
¬ 𝜑) ∨ ¬ ¬
𝜑) | 
| 6 |  | rb-ax3 1753 | . . . . . . 7
⊢ (¬
¬ ¬ 𝜑 ∨ (¬
¬ 𝜑 ∨ ¬ ¬
𝜑)) | 
| 7 | 5, 6 | rbsyl 1755 | . . . . . 6
⊢ (¬
¬ ¬ 𝜑 ∨ ¬
¬ 𝜑) | 
| 8 |  | rb-ax2 1752 | . . . . . 6
⊢ (¬
(¬ ¬ ¬ 𝜑 ∨
¬ ¬ 𝜑) ∨ (¬
¬ 𝜑 ∨ ¬ ¬
¬ 𝜑)) | 
| 9 | 7, 8 | anmp 1750 | . . . . 5
⊢ (¬
¬ 𝜑 ∨ ¬ ¬
¬ 𝜑) | 
| 10 | 9, 4 | rblem1 1756 | . . . 4
⊢ (¬
(¬ 𝜑 ∨ 𝜑) ∨ (¬ ¬ ¬ 𝜑 ∨ 𝜑)) | 
| 11 | 4, 10 | anmp 1750 | . . 3
⊢ (¬
¬ ¬ 𝜑 ∨ 𝜑) | 
| 12 |  | rb-ax4 1754 | . . . . 5
⊢ (¬
(¬ 𝜓 ∨ ¬ 𝜓) ∨ ¬ 𝜓) | 
| 13 |  | rb-ax3 1753 | . . . . 5
⊢ (¬
¬ 𝜓 ∨ (¬ 𝜓 ∨ ¬ 𝜓)) | 
| 14 | 12, 13 | rbsyl 1755 | . . . 4
⊢ (¬
¬ 𝜓 ∨ ¬ 𝜓) | 
| 15 |  | rb-ax2 1752 | . . . 4
⊢ (¬
(¬ ¬ 𝜓 ∨ ¬
𝜓) ∨ (¬ 𝜓 ∨ ¬ ¬ 𝜓)) | 
| 16 | 14, 15 | anmp 1750 | . . 3
⊢ (¬
𝜓 ∨ ¬ ¬ 𝜓) | 
| 17 | 11, 16 | rblem1 1756 | . 2
⊢ (¬
(¬ ¬ 𝜑 ∨ 𝜓) ∨ (𝜑 ∨ ¬ ¬ 𝜓)) | 
| 18 | 1, 17 | rbsyl 1755 | 1
⊢ (¬
(¬ ¬ 𝜑 ∨ 𝜓) ∨ (¬ ¬ 𝜓 ∨ 𝜑)) |