Proof of Theorem rblem5
| Step | Hyp | Ref
| Expression |
| 1 | | rb-ax2 1753 |
. 2
⊢ (¬
(𝜑 ∨ ¬ ¬ 𝜓) ∨ (¬ ¬ 𝜓 ∨ 𝜑)) |
| 2 | | rb-ax4 1755 |
. . . . 5
⊢ (¬
(𝜑 ∨ 𝜑) ∨ 𝜑) |
| 3 | | rb-ax3 1754 |
. . . . 5
⊢ (¬
𝜑 ∨ (𝜑 ∨ 𝜑)) |
| 4 | 2, 3 | rbsyl 1756 |
. . . 4
⊢ (¬
𝜑 ∨ 𝜑) |
| 5 | | rb-ax4 1755 |
. . . . . . 7
⊢ (¬
(¬ ¬ 𝜑 ∨ ¬
¬ 𝜑) ∨ ¬ ¬
𝜑) |
| 6 | | rb-ax3 1754 |
. . . . . . 7
⊢ (¬
¬ ¬ 𝜑 ∨ (¬
¬ 𝜑 ∨ ¬ ¬
𝜑)) |
| 7 | 5, 6 | rbsyl 1756 |
. . . . . 6
⊢ (¬
¬ ¬ 𝜑 ∨ ¬
¬ 𝜑) |
| 8 | | rb-ax2 1753 |
. . . . . 6
⊢ (¬
(¬ ¬ ¬ 𝜑 ∨
¬ ¬ 𝜑) ∨ (¬
¬ 𝜑 ∨ ¬ ¬
¬ 𝜑)) |
| 9 | 7, 8 | anmp 1751 |
. . . . 5
⊢ (¬
¬ 𝜑 ∨ ¬ ¬
¬ 𝜑) |
| 10 | 9, 4 | rblem1 1757 |
. . . 4
⊢ (¬
(¬ 𝜑 ∨ 𝜑) ∨ (¬ ¬ ¬ 𝜑 ∨ 𝜑)) |
| 11 | 4, 10 | anmp 1751 |
. . 3
⊢ (¬
¬ ¬ 𝜑 ∨ 𝜑) |
| 12 | | rb-ax4 1755 |
. . . . 5
⊢ (¬
(¬ 𝜓 ∨ ¬ 𝜓) ∨ ¬ 𝜓) |
| 13 | | rb-ax3 1754 |
. . . . 5
⊢ (¬
¬ 𝜓 ∨ (¬ 𝜓 ∨ ¬ 𝜓)) |
| 14 | 12, 13 | rbsyl 1756 |
. . . 4
⊢ (¬
¬ 𝜓 ∨ ¬ 𝜓) |
| 15 | | rb-ax2 1753 |
. . . 4
⊢ (¬
(¬ ¬ 𝜓 ∨ ¬
𝜓) ∨ (¬ 𝜓 ∨ ¬ ¬ 𝜓)) |
| 16 | 14, 15 | anmp 1751 |
. . 3
⊢ (¬
𝜓 ∨ ¬ ¬ 𝜓) |
| 17 | 11, 16 | rblem1 1757 |
. 2
⊢ (¬
(¬ ¬ 𝜑 ∨ 𝜓) ∨ (𝜑 ∨ ¬ ¬ 𝜓)) |
| 18 | 1, 17 | rbsyl 1756 |
1
⊢ (¬
(¬ ¬ 𝜑 ∨ 𝜓) ∨ (¬ ¬ 𝜓 ∨ 𝜑)) |