Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rblem1 | Structured version Visualization version GIF version |
Description: Used to rederive the Lukasiewicz axioms from Russell-Bernays'. (Contributed by Anthony Hart, 18-Aug-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
rblem1.1 | ⊢ (¬ 𝜑 ∨ 𝜓) |
rblem1.2 | ⊢ (¬ 𝜒 ∨ 𝜃) |
Ref | Expression |
---|---|
rblem1 | ⊢ (¬ (𝜑 ∨ 𝜒) ∨ (𝜓 ∨ 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rblem1.2 | . . 3 ⊢ (¬ 𝜒 ∨ 𝜃) | |
2 | rb-ax1 1752 | . . 3 ⊢ (¬ (¬ 𝜒 ∨ 𝜃) ∨ (¬ (𝜓 ∨ 𝜒) ∨ (𝜓 ∨ 𝜃))) | |
3 | 1, 2 | anmp 1751 | . 2 ⊢ (¬ (𝜓 ∨ 𝜒) ∨ (𝜓 ∨ 𝜃)) |
4 | rb-ax2 1753 | . . 3 ⊢ (¬ (𝜒 ∨ 𝜓) ∨ (𝜓 ∨ 𝜒)) | |
5 | rblem1.1 | . . . . 5 ⊢ (¬ 𝜑 ∨ 𝜓) | |
6 | rb-ax1 1752 | . . . . 5 ⊢ (¬ (¬ 𝜑 ∨ 𝜓) ∨ (¬ (𝜒 ∨ 𝜑) ∨ (𝜒 ∨ 𝜓))) | |
7 | 5, 6 | anmp 1751 | . . . 4 ⊢ (¬ (𝜒 ∨ 𝜑) ∨ (𝜒 ∨ 𝜓)) |
8 | rb-ax2 1753 | . . . 4 ⊢ (¬ (𝜑 ∨ 𝜒) ∨ (𝜒 ∨ 𝜑)) | |
9 | 7, 8 | rbsyl 1756 | . . 3 ⊢ (¬ (𝜑 ∨ 𝜒) ∨ (𝜒 ∨ 𝜓)) |
10 | 4, 9 | rbsyl 1756 | . 2 ⊢ (¬ (𝜑 ∨ 𝜒) ∨ (𝜓 ∨ 𝜒)) |
11 | 3, 10 | rbsyl 1756 | 1 ⊢ (¬ (𝜑 ∨ 𝜒) ∨ (𝜓 ∨ 𝜃)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∨ wo 845 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 |
This theorem is referenced by: rblem4 1760 rblem5 1761 re2luk1 1765 re2luk2 1766 |
Copyright terms: Public domain | W3C validator |