Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rblem7 | Structured version Visualization version GIF version |
Description: Used to rederive the Lukasiewicz axioms from Russell-Bernays'. (Contributed by Anthony Hart, 19-Aug-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
rblem7.1 | ⊢ ¬ (¬ (¬ 𝜑 ∨ 𝜓) ∨ ¬ (¬ 𝜓 ∨ 𝜑)) |
Ref | Expression |
---|---|
rblem7 | ⊢ (¬ 𝜓 ∨ 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rblem7.1 | . 2 ⊢ ¬ (¬ (¬ 𝜑 ∨ 𝜓) ∨ ¬ (¬ 𝜓 ∨ 𝜑)) | |
2 | rb-ax3 1757 | . . 3 ⊢ (¬ ¬ (¬ 𝜓 ∨ 𝜑) ∨ (¬ (¬ 𝜑 ∨ 𝜓) ∨ ¬ (¬ 𝜓 ∨ 𝜑))) | |
3 | rblem5 1764 | . . 3 ⊢ (¬ (¬ ¬ (¬ 𝜓 ∨ 𝜑) ∨ (¬ (¬ 𝜑 ∨ 𝜓) ∨ ¬ (¬ 𝜓 ∨ 𝜑))) ∨ (¬ ¬ (¬ (¬ 𝜑 ∨ 𝜓) ∨ ¬ (¬ 𝜓 ∨ 𝜑)) ∨ (¬ 𝜓 ∨ 𝜑))) | |
4 | 2, 3 | anmp 1754 | . 2 ⊢ (¬ ¬ (¬ (¬ 𝜑 ∨ 𝜓) ∨ ¬ (¬ 𝜓 ∨ 𝜑)) ∨ (¬ 𝜓 ∨ 𝜑)) |
5 | 1, 4 | anmp 1754 | 1 ⊢ (¬ 𝜓 ∨ 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∨ wo 844 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 |
This theorem is referenced by: re2luk1 1768 re2luk2 1769 re2luk3 1770 |
Copyright terms: Public domain | W3C validator |