MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  re1axmp Structured version   Visualization version   GIF version

Theorem re1axmp 1768
Description: ax-mp 5 derived from Russell-Bernays'. (Contributed by Anthony Hart, 19-Aug-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
re1axmp.min 𝜑
re1axmp.maj (𝜑𝜓)
Assertion
Ref Expression
re1axmp 𝜓

Proof of Theorem re1axmp
StepHypRef Expression
1 re1axmp.min . 2 𝜑
2 re1axmp.maj . . 3 (𝜑𝜓)
3 rb-imdf 1754 . . . 4 ¬ (¬ (¬ (𝜑𝜓) ∨ (¬ 𝜑𝜓)) ∨ ¬ (¬ (¬ 𝜑𝜓) ∨ (𝜑𝜓)))
43rblem6 1766 . . 3 (¬ (𝜑𝜓) ∨ (¬ 𝜑𝜓))
52, 4anmp 1755 . 2 𝜑𝜓)
61, 5anmp 1755 1 𝜓
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wo 843
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator