Proof of Theorem re2luk1
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | rb-imdf 1749 | . . . 4
⊢  ¬
(¬ (¬ ((𝜓 →
𝜒) → (𝜑 → 𝜒)) ∨ (¬ (𝜓 → 𝜒) ∨ (𝜑 → 𝜒))) ∨ ¬ (¬ (¬ (𝜓 → 𝜒) ∨ (𝜑 → 𝜒)) ∨ ((𝜓 → 𝜒) → (𝜑 → 𝜒)))) | 
| 2 | 1 | rblem7 1762 | . . 3
⊢ (¬
(¬ (𝜓 → 𝜒) ∨ (𝜑 → 𝜒)) ∨ ((𝜓 → 𝜒) → (𝜑 → 𝜒))) | 
| 3 |  | rb-imdf 1749 | . . . . . . . 8
⊢  ¬
(¬ (¬ (𝜓 → 𝜒) ∨ (¬ 𝜓 ∨ 𝜒)) ∨ ¬ (¬ (¬ 𝜓 ∨ 𝜒) ∨ (𝜓 → 𝜒))) | 
| 4 | 3 | rblem6 1761 | . . . . . . 7
⊢ (¬
(𝜓 → 𝜒) ∨ (¬ 𝜓 ∨ 𝜒)) | 
| 5 |  | rb-ax2 1752 | . . . . . . . 8
⊢ (¬
(¬ (𝜓 → 𝜒) ∨ ¬ ¬ (¬ 𝜓 ∨ 𝜒)) ∨ (¬ ¬ (¬ 𝜓 ∨ 𝜒) ∨ ¬ (𝜓 → 𝜒))) | 
| 6 |  | rb-ax4 1754 | . . . . . . . . . 10
⊢ (¬
(¬ (𝜓 → 𝜒) ∨ ¬ (𝜓 → 𝜒)) ∨ ¬ (𝜓 → 𝜒)) | 
| 7 |  | rb-ax3 1753 | . . . . . . . . . 10
⊢ (¬
¬ (𝜓 → 𝜒) ∨ (¬ (𝜓 → 𝜒) ∨ ¬ (𝜓 → 𝜒))) | 
| 8 | 6, 7 | rbsyl 1755 | . . . . . . . . 9
⊢ (¬
¬ (𝜓 → 𝜒) ∨ ¬ (𝜓 → 𝜒)) | 
| 9 |  | rb-ax4 1754 | . . . . . . . . . . 11
⊢ (¬
(¬ (¬ 𝜓 ∨ 𝜒) ∨ ¬ (¬ 𝜓 ∨ 𝜒)) ∨ ¬ (¬ 𝜓 ∨ 𝜒)) | 
| 10 |  | rb-ax3 1753 | . . . . . . . . . . 11
⊢ (¬
¬ (¬ 𝜓 ∨ 𝜒) ∨ (¬ (¬ 𝜓 ∨ 𝜒) ∨ ¬ (¬ 𝜓 ∨ 𝜒))) | 
| 11 | 9, 10 | rbsyl 1755 | . . . . . . . . . 10
⊢ (¬
¬ (¬ 𝜓 ∨ 𝜒) ∨ ¬ (¬ 𝜓 ∨ 𝜒)) | 
| 12 |  | rb-ax2 1752 | . . . . . . . . . 10
⊢ (¬
(¬ ¬ (¬ 𝜓 ∨
𝜒) ∨ ¬ (¬ 𝜓 ∨ 𝜒)) ∨ (¬ (¬ 𝜓 ∨ 𝜒) ∨ ¬ ¬ (¬ 𝜓 ∨ 𝜒))) | 
| 13 | 11, 12 | anmp 1750 | . . . . . . . . 9
⊢ (¬
(¬ 𝜓 ∨ 𝜒) ∨ ¬ ¬ (¬ 𝜓 ∨ 𝜒)) | 
| 14 | 8, 13 | rblem1 1756 | . . . . . . . 8
⊢ (¬
(¬ (𝜓 → 𝜒) ∨ (¬ 𝜓 ∨ 𝜒)) ∨ (¬ (𝜓 → 𝜒) ∨ ¬ ¬ (¬ 𝜓 ∨ 𝜒))) | 
| 15 | 5, 14 | rbsyl 1755 | . . . . . . 7
⊢ (¬
(¬ (𝜓 → 𝜒) ∨ (¬ 𝜓 ∨ 𝜒)) ∨ (¬ ¬ (¬ 𝜓 ∨ 𝜒) ∨ ¬ (𝜓 → 𝜒))) | 
| 16 | 4, 15 | anmp 1750 | . . . . . 6
⊢ (¬
¬ (¬ 𝜓 ∨ 𝜒) ∨ ¬ (𝜓 → 𝜒)) | 
| 17 |  | rb-imdf 1749 | . . . . . . 7
⊢  ¬
(¬ (¬ (𝜑 → 𝜒) ∨ (¬ 𝜑 ∨ 𝜒)) ∨ ¬ (¬ (¬ 𝜑 ∨ 𝜒) ∨ (𝜑 → 𝜒))) | 
| 18 | 17 | rblem7 1762 | . . . . . 6
⊢ (¬
(¬ 𝜑 ∨ 𝜒) ∨ (𝜑 → 𝜒)) | 
| 19 | 16, 18 | rblem1 1756 | . . . . 5
⊢ (¬
(¬ (¬ 𝜓 ∨ 𝜒) ∨ (¬ 𝜑 ∨ 𝜒)) ∨ (¬ (𝜓 → 𝜒) ∨ (𝜑 → 𝜒))) | 
| 20 |  | rb-ax1 1751 | . . . . . 6
⊢ (¬
(¬ 𝜓 ∨ 𝜒) ∨ (¬ (¬ 𝜑 ∨ 𝜓) ∨ (¬ 𝜑 ∨ 𝜒))) | 
| 21 |  | rb-ax2 1752 | . . . . . . 7
⊢ (¬
((¬ (¬ 𝜓 ∨ 𝜒) ∨ (¬ 𝜑 ∨ 𝜒)) ∨ ¬ (¬ 𝜑 ∨ 𝜓)) ∨ (¬ (¬ 𝜑 ∨ 𝜓) ∨ (¬ (¬ 𝜓 ∨ 𝜒) ∨ (¬ 𝜑 ∨ 𝜒)))) | 
| 22 |  | rb-ax4 1754 | . . . . . . . . . 10
⊢ (¬
(¬ (¬ 𝜑 ∨ 𝜓) ∨ ¬ (¬ 𝜑 ∨ 𝜓)) ∨ ¬ (¬ 𝜑 ∨ 𝜓)) | 
| 23 |  | rb-ax3 1753 | . . . . . . . . . 10
⊢ (¬
¬ (¬ 𝜑 ∨ 𝜓) ∨ (¬ (¬ 𝜑 ∨ 𝜓) ∨ ¬ (¬ 𝜑 ∨ 𝜓))) | 
| 24 | 22, 23 | rbsyl 1755 | . . . . . . . . 9
⊢ (¬
¬ (¬ 𝜑 ∨ 𝜓) ∨ ¬ (¬ 𝜑 ∨ 𝜓)) | 
| 25 |  | rb-ax4 1754 | . . . . . . . . . 10
⊢ (¬
((¬ 𝜑 ∨ 𝜒) ∨ (¬ 𝜑 ∨ 𝜒)) ∨ (¬ 𝜑 ∨ 𝜒)) | 
| 26 |  | rb-ax3 1753 | . . . . . . . . . 10
⊢ (¬
(¬ 𝜑 ∨ 𝜒) ∨ ((¬ 𝜑 ∨ 𝜒) ∨ (¬ 𝜑 ∨ 𝜒))) | 
| 27 | 25, 26 | rbsyl 1755 | . . . . . . . . 9
⊢ (¬
(¬ 𝜑 ∨ 𝜒) ∨ (¬ 𝜑 ∨ 𝜒)) | 
| 28 | 24, 27, 11 | rblem4 1759 | . . . . . . . 8
⊢ (¬
((¬ (¬ 𝜑 ∨ 𝜓) ∨ (¬ 𝜑 ∨ 𝜒)) ∨ ¬ (¬ 𝜓 ∨ 𝜒)) ∨ ((¬ (¬ 𝜓 ∨ 𝜒) ∨ (¬ 𝜑 ∨ 𝜒)) ∨ ¬ (¬ 𝜑 ∨ 𝜓))) | 
| 29 |  | rb-ax2 1752 | . . . . . . . 8
⊢ (¬
(¬ (¬ 𝜓 ∨ 𝜒) ∨ (¬ (¬ 𝜑 ∨ 𝜓) ∨ (¬ 𝜑 ∨ 𝜒))) ∨ ((¬ (¬ 𝜑 ∨ 𝜓) ∨ (¬ 𝜑 ∨ 𝜒)) ∨ ¬ (¬ 𝜓 ∨ 𝜒))) | 
| 30 | 28, 29 | rbsyl 1755 | . . . . . . 7
⊢ (¬
(¬ (¬ 𝜓 ∨ 𝜒) ∨ (¬ (¬ 𝜑 ∨ 𝜓) ∨ (¬ 𝜑 ∨ 𝜒))) ∨ ((¬ (¬ 𝜓 ∨ 𝜒) ∨ (¬ 𝜑 ∨ 𝜒)) ∨ ¬ (¬ 𝜑 ∨ 𝜓))) | 
| 31 | 21, 30 | rbsyl 1755 | . . . . . 6
⊢ (¬
(¬ (¬ 𝜓 ∨ 𝜒) ∨ (¬ (¬ 𝜑 ∨ 𝜓) ∨ (¬ 𝜑 ∨ 𝜒))) ∨ (¬ (¬ 𝜑 ∨ 𝜓) ∨ (¬ (¬ 𝜓 ∨ 𝜒) ∨ (¬ 𝜑 ∨ 𝜒)))) | 
| 32 | 20, 31 | anmp 1750 | . . . . 5
⊢ (¬
(¬ 𝜑 ∨ 𝜓) ∨ (¬ (¬ 𝜓 ∨ 𝜒) ∨ (¬ 𝜑 ∨ 𝜒))) | 
| 33 | 19, 32 | rbsyl 1755 | . . . 4
⊢ (¬
(¬ 𝜑 ∨ 𝜓) ∨ (¬ (𝜓 → 𝜒) ∨ (𝜑 → 𝜒))) | 
| 34 |  | rb-imdf 1749 | . . . . 5
⊢  ¬
(¬ (¬ (𝜑 → 𝜓) ∨ (¬ 𝜑 ∨ 𝜓)) ∨ ¬ (¬ (¬ 𝜑 ∨ 𝜓) ∨ (𝜑 → 𝜓))) | 
| 35 | 34 | rblem6 1761 | . . . 4
⊢ (¬
(𝜑 → 𝜓) ∨ (¬ 𝜑 ∨ 𝜓)) | 
| 36 | 33, 35 | rbsyl 1755 | . . 3
⊢ (¬
(𝜑 → 𝜓) ∨ (¬ (𝜓 → 𝜒) ∨ (𝜑 → 𝜒))) | 
| 37 | 2, 36 | rbsyl 1755 | . 2
⊢ (¬
(𝜑 → 𝜓) ∨ ((𝜓 → 𝜒) → (𝜑 → 𝜒))) | 
| 38 |  | rb-imdf 1749 | . . 3
⊢  ¬
(¬ (¬ ((𝜑 →
𝜓) → ((𝜓 → 𝜒) → (𝜑 → 𝜒))) ∨ (¬ (𝜑 → 𝜓) ∨ ((𝜓 → 𝜒) → (𝜑 → 𝜒)))) ∨ ¬ (¬ (¬ (𝜑 → 𝜓) ∨ ((𝜓 → 𝜒) → (𝜑 → 𝜒))) ∨ ((𝜑 → 𝜓) → ((𝜓 → 𝜒) → (𝜑 → 𝜒))))) | 
| 39 | 38 | rblem7 1762 | . 2
⊢ (¬
(¬ (𝜑 → 𝜓) ∨ ((𝜓 → 𝜒) → (𝜑 → 𝜒))) ∨ ((𝜑 → 𝜓) → ((𝜓 → 𝜒) → (𝜑 → 𝜒)))) | 
| 40 | 37, 39 | anmp 1750 | 1
⊢ ((𝜑 → 𝜓) → ((𝜓 → 𝜒) → (𝜑 → 𝜒))) |