MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sb3an Structured version   Visualization version   GIF version

Theorem sb3an 2091
Description: Threefold conjunction inside and outside of a substitution are equivalent. (Contributed by NM, 14-Dec-2006.)
Assertion
Ref Expression
sb3an ([𝑦 / 𝑥](𝜑𝜓𝜒) ↔ ([𝑦 / 𝑥]𝜑 ∧ [𝑦 / 𝑥]𝜓 ∧ [𝑦 / 𝑥]𝜒))

Proof of Theorem sb3an
StepHypRef Expression
1 df-3an 1090 . . 3 ((𝜑𝜓𝜒) ↔ ((𝜑𝜓) ∧ 𝜒))
21sbbii 2086 . 2 ([𝑦 / 𝑥](𝜑𝜓𝜒) ↔ [𝑦 / 𝑥]((𝜑𝜓) ∧ 𝜒))
3 sban 2090 . 2 ([𝑦 / 𝑥]((𝜑𝜓) ∧ 𝜒) ↔ ([𝑦 / 𝑥](𝜑𝜓) ∧ [𝑦 / 𝑥]𝜒))
4 sban 2090 . . . 4 ([𝑦 / 𝑥](𝜑𝜓) ↔ ([𝑦 / 𝑥]𝜑 ∧ [𝑦 / 𝑥]𝜓))
54anbi1i 627 . . 3 (([𝑦 / 𝑥](𝜑𝜓) ∧ [𝑦 / 𝑥]𝜒) ↔ (([𝑦 / 𝑥]𝜑 ∧ [𝑦 / 𝑥]𝜓) ∧ [𝑦 / 𝑥]𝜒))
6 df-3an 1090 . . 3 (([𝑦 / 𝑥]𝜑 ∧ [𝑦 / 𝑥]𝜓 ∧ [𝑦 / 𝑥]𝜒) ↔ (([𝑦 / 𝑥]𝜑 ∧ [𝑦 / 𝑥]𝜓) ∧ [𝑦 / 𝑥]𝜒))
75, 6bitr4i 281 . 2 (([𝑦 / 𝑥](𝜑𝜓) ∧ [𝑦 / 𝑥]𝜒) ↔ ([𝑦 / 𝑥]𝜑 ∧ [𝑦 / 𝑥]𝜓 ∧ [𝑦 / 𝑥]𝜒))
82, 3, 73bitri 300 1 ([𝑦 / 𝑥](𝜑𝜓𝜒) ↔ ([𝑦 / 𝑥]𝜑 ∧ [𝑦 / 𝑥]𝜓 ∧ [𝑦 / 𝑥]𝜒))
Colors of variables: wff setvar class
Syntax hints:  wb 209  wa 399  w3a 1088  [wsb 2074
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816
This theorem depends on definitions:  df-bi 210  df-an 400  df-3an 1090  df-sb 2075
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator