| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > spsbe | Structured version Visualization version GIF version | ||
| Description: Existential generalization: if a proposition is true for a specific instance, then there exists an instance where it is true. (Contributed by NM, 29-Jun-1993.) (Proof shortened by Wolf Lammen, 3-May-2018.) Revise df-sb 2066. (Revised by BJ, 22-Dec-2020.) (Proof shortened by Steven Nguyen, 11-Jul-2023.) |
| Ref | Expression |
|---|---|
| spsbe | ⊢ ([𝑡 / 𝑥]𝜑 → ∃𝑥𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-sb 2066 | . . 3 ⊢ ([𝑡 / 𝑥]𝜑 ↔ ∀𝑦(𝑦 = 𝑡 → ∀𝑥(𝑥 = 𝑦 → 𝜑))) | |
| 2 | alequexv 2001 | . . 3 ⊢ (∀𝑦(𝑦 = 𝑡 → ∀𝑥(𝑥 = 𝑦 → 𝜑)) → ∃𝑦∀𝑥(𝑥 = 𝑦 → 𝜑)) | |
| 3 | 1, 2 | sylbi 217 | . 2 ⊢ ([𝑡 / 𝑥]𝜑 → ∃𝑦∀𝑥(𝑥 = 𝑦 → 𝜑)) |
| 4 | exsbim 2002 | . 2 ⊢ (∃𝑦∀𝑥(𝑥 = 𝑦 → 𝜑) → ∃𝑥𝜑) | |
| 5 | 3, 4 | syl 17 | 1 ⊢ ([𝑡 / 𝑥]𝜑 → ∃𝑥𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1538 ∃wex 1779 [wsb 2065 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 |
| This theorem depends on definitions: df-bi 207 df-ex 1780 df-sb 2066 |
| This theorem is referenced by: sbv 2089 nsb 2107 sbft 2270 sb1 2477 2mo 2642 bj-sbft 36760 wl-lem-moexsb 37553 spsbce-2 44342 sb5ALT 44487 sb5ALTVD 44874 |
| Copyright terms: Public domain | W3C validator |