Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > spsbe | Structured version Visualization version GIF version |
Description: Existential generalization: if a proposition is true for a specific instance, then there exists an instance where it is true. (Contributed by NM, 29-Jun-1993.) (Proof shortened by Wolf Lammen, 3-May-2018.) Revise df-sb 2071. (Revised by BJ, 22-Dec-2020.) (Proof shortened by Steven Nguyen, 11-Jul-2023.) |
Ref | Expression |
---|---|
spsbe | ⊢ ([𝑡 / 𝑥]𝜑 → ∃𝑥𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-sb 2071 | . 2 ⊢ ([𝑡 / 𝑥]𝜑 ↔ ∀𝑦(𝑦 = 𝑡 → ∀𝑥(𝑥 = 𝑦 → 𝜑))) | |
2 | alequexv 2008 | . . 3 ⊢ (∀𝑦(𝑦 = 𝑡 → ∀𝑥(𝑥 = 𝑦 → 𝜑)) → ∃𝑦∀𝑥(𝑥 = 𝑦 → 𝜑)) | |
3 | exsbim 2009 | . . 3 ⊢ (∃𝑦∀𝑥(𝑥 = 𝑦 → 𝜑) → ∃𝑥𝜑) | |
4 | 2, 3 | syl 17 | . 2 ⊢ (∀𝑦(𝑦 = 𝑡 → ∀𝑥(𝑥 = 𝑦 → 𝜑)) → ∃𝑥𝜑) |
5 | 1, 4 | sylbi 220 | 1 ⊢ ([𝑡 / 𝑥]𝜑 → ∃𝑥𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1537 ∃wex 1782 [wsb 2070 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 |
This theorem depends on definitions: df-bi 210 df-ex 1783 df-sb 2071 |
This theorem is referenced by: sbv 2096 sbft 2268 sb1 2493 2mo 2670 noel 4231 bj-sbft 34501 wl-lem-moexsb 35250 nsb 39690 spsbce-2 41459 sb5ALT 41605 sb5ALTVD 41993 |
Copyright terms: Public domain | W3C validator |