MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  spsbe Structured version   Visualization version   GIF version

Theorem spsbe 2083
Description: Existential generalization: if a proposition is true for a specific instance, then there exists an instance where it is true. (Contributed by NM, 29-Jun-1993.) (Proof shortened by Wolf Lammen, 3-May-2018.) Revise df-sb 2066. (Revised by BJ, 22-Dec-2020.) (Proof shortened by Steven Nguyen, 11-Jul-2023.)
Assertion
Ref Expression
spsbe ([𝑡 / 𝑥]𝜑 → ∃𝑥𝜑)

Proof of Theorem spsbe
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 df-sb 2066 . . 3 ([𝑡 / 𝑥]𝜑 ↔ ∀𝑦(𝑦 = 𝑡 → ∀𝑥(𝑥 = 𝑦𝜑)))
2 alequexv 2001 . . 3 (∀𝑦(𝑦 = 𝑡 → ∀𝑥(𝑥 = 𝑦𝜑)) → ∃𝑦𝑥(𝑥 = 𝑦𝜑))
31, 2sylbi 217 . 2 ([𝑡 / 𝑥]𝜑 → ∃𝑦𝑥(𝑥 = 𝑦𝜑))
4 exsbim 2002 . 2 (∃𝑦𝑥(𝑥 = 𝑦𝜑) → ∃𝑥𝜑)
53, 4syl 17 1 ([𝑡 / 𝑥]𝜑 → ∃𝑥𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1538  wex 1779  [wsb 2065
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967
This theorem depends on definitions:  df-bi 207  df-ex 1780  df-sb 2066
This theorem is referenced by:  sbv  2089  nsb  2107  sbft  2270  sb1  2477  2mo  2642  bj-sbft  36760  wl-lem-moexsb  37553  spsbce-2  44342  sb5ALT  44487  sb5ALTVD  44874
  Copyright terms: Public domain W3C validator