| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sban | Structured version Visualization version GIF version | ||
| Description: Conjunction inside and outside of a substitution are equivalent. Compare 19.26 1871. (Contributed by NM, 14-May-1993.) (Proof shortened by Steven Nguyen, 13-Aug-2023.) |
| Ref | Expression |
|---|---|
| sban | ⊢ ([𝑦 / 𝑥](𝜑 ∧ 𝜓) ↔ ([𝑦 / 𝑥]𝜑 ∧ [𝑦 / 𝑥]𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 482 | . . . 4 ⊢ ((𝜑 ∧ 𝜓) → 𝜑) | |
| 2 | 1 | sbimi 2079 | . . 3 ⊢ ([𝑦 / 𝑥](𝜑 ∧ 𝜓) → [𝑦 / 𝑥]𝜑) |
| 3 | simpr 484 | . . . 4 ⊢ ((𝜑 ∧ 𝜓) → 𝜓) | |
| 4 | 3 | sbimi 2079 | . . 3 ⊢ ([𝑦 / 𝑥](𝜑 ∧ 𝜓) → [𝑦 / 𝑥]𝜓) |
| 5 | 2, 4 | jca 511 | . 2 ⊢ ([𝑦 / 𝑥](𝜑 ∧ 𝜓) → ([𝑦 / 𝑥]𝜑 ∧ [𝑦 / 𝑥]𝜓)) |
| 6 | pm3.2 469 | . . . 4 ⊢ (𝜑 → (𝜓 → (𝜑 ∧ 𝜓))) | |
| 7 | 6 | sb2imi 2080 | . . 3 ⊢ ([𝑦 / 𝑥]𝜑 → ([𝑦 / 𝑥]𝜓 → [𝑦 / 𝑥](𝜑 ∧ 𝜓))) |
| 8 | 7 | imp 406 | . 2 ⊢ (([𝑦 / 𝑥]𝜑 ∧ [𝑦 / 𝑥]𝜓) → [𝑦 / 𝑥](𝜑 ∧ 𝜓)) |
| 9 | 5, 8 | impbii 209 | 1 ⊢ ([𝑦 / 𝑥](𝜑 ∧ 𝜓) ↔ ([𝑦 / 𝑥]𝜑 ∧ [𝑦 / 𝑥]𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 [wsb 2067 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-sb 2068 |
| This theorem is referenced by: sb3an 2086 sbbi 2311 sbabel 2928 cbvreu 3388 rmo3f 3689 sbcan 3787 rmo3 3836 inab 4258 difab 4259 exss 5406 inopab 5773 difopab 5774 mo5f 32470 iuninc 32542 suppss2f 32622 fmptdF 32640 disjdsct 32688 esumpfinvalf 34110 measiuns 34251 ballotlemodife 34532 xpab 35791 sbn1ALT 36923 sb5ALT 44642 2uasbanh 44678 2uasbanhVD 45027 sb5ALTVD 45029 ellimcabssub0 45741 ichan 47579 |
| Copyright terms: Public domain | W3C validator |