MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sban Structured version   Visualization version   GIF version

Theorem sban 2081
Description: Conjunction inside and outside of a substitution are equivalent. Compare 19.26 1870. (Contributed by NM, 14-May-1993.) (Proof shortened by Steven Nguyen, 13-Aug-2023.)
Assertion
Ref Expression
sban ([𝑦 / 𝑥](𝜑𝜓) ↔ ([𝑦 / 𝑥]𝜑 ∧ [𝑦 / 𝑥]𝜓))

Proof of Theorem sban
StepHypRef Expression
1 simpl 482 . . . 4 ((𝜑𝜓) → 𝜑)
21sbimi 2075 . . 3 ([𝑦 / 𝑥](𝜑𝜓) → [𝑦 / 𝑥]𝜑)
3 simpr 484 . . . 4 ((𝜑𝜓) → 𝜓)
43sbimi 2075 . . 3 ([𝑦 / 𝑥](𝜑𝜓) → [𝑦 / 𝑥]𝜓)
52, 4jca 511 . 2 ([𝑦 / 𝑥](𝜑𝜓) → ([𝑦 / 𝑥]𝜑 ∧ [𝑦 / 𝑥]𝜓))
6 pm3.2 469 . . . 4 (𝜑 → (𝜓 → (𝜑𝜓)))
76sb2imi 2076 . . 3 ([𝑦 / 𝑥]𝜑 → ([𝑦 / 𝑥]𝜓 → [𝑦 / 𝑥](𝜑𝜓)))
87imp 406 . 2 (([𝑦 / 𝑥]𝜑 ∧ [𝑦 / 𝑥]𝜓) → [𝑦 / 𝑥](𝜑𝜓))
95, 8impbii 209 1 ([𝑦 / 𝑥](𝜑𝜓) ↔ ([𝑦 / 𝑥]𝜑 ∧ [𝑦 / 𝑥]𝜓))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  [wsb 2065
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809
This theorem depends on definitions:  df-bi 207  df-an 396  df-sb 2066
This theorem is referenced by:  sb3an  2082  sbbi  2307  sbabel  2924  cbvreu  3388  rmo3f  3696  sbcan  3794  rmo3  3843  inab  4262  difab  4263  exss  5410  inopab  5776  difopab  5777  mo5f  32451  iuninc  32522  suppss2f  32595  fmptdF  32613  disjdsct  32659  esumpfinvalf  34042  measiuns  34183  ballotlemodife  34465  xpab  35698  sbn1ALT  36831  sb5ALT  44499  2uasbanh  44535  2uasbanhVD  44884  sb5ALTVD  44886  ellimcabssub0  45599  ichan  47440
  Copyright terms: Public domain W3C validator