Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sban | Structured version Visualization version GIF version |
Description: Conjunction inside and outside of a substitution are equivalent. Compare 19.26 1874. (Contributed by NM, 14-May-1993.) (Proof shortened by Steven Nguyen, 13-Aug-2023.) |
Ref | Expression |
---|---|
sban | ⊢ ([𝑦 / 𝑥](𝜑 ∧ 𝜓) ↔ ([𝑦 / 𝑥]𝜑 ∧ [𝑦 / 𝑥]𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 482 | . . . 4 ⊢ ((𝜑 ∧ 𝜓) → 𝜑) | |
2 | 1 | sbimi 2078 | . . 3 ⊢ ([𝑦 / 𝑥](𝜑 ∧ 𝜓) → [𝑦 / 𝑥]𝜑) |
3 | simpr 484 | . . . 4 ⊢ ((𝜑 ∧ 𝜓) → 𝜓) | |
4 | 3 | sbimi 2078 | . . 3 ⊢ ([𝑦 / 𝑥](𝜑 ∧ 𝜓) → [𝑦 / 𝑥]𝜓) |
5 | 2, 4 | jca 511 | . 2 ⊢ ([𝑦 / 𝑥](𝜑 ∧ 𝜓) → ([𝑦 / 𝑥]𝜑 ∧ [𝑦 / 𝑥]𝜓)) |
6 | pm3.2 469 | . . . 4 ⊢ (𝜑 → (𝜓 → (𝜑 ∧ 𝜓))) | |
7 | 6 | sb2imi 2079 | . . 3 ⊢ ([𝑦 / 𝑥]𝜑 → ([𝑦 / 𝑥]𝜓 → [𝑦 / 𝑥](𝜑 ∧ 𝜓))) |
8 | 7 | imp 406 | . 2 ⊢ (([𝑦 / 𝑥]𝜑 ∧ [𝑦 / 𝑥]𝜓) → [𝑦 / 𝑥](𝜑 ∧ 𝜓)) |
9 | 5, 8 | impbii 208 | 1 ⊢ ([𝑦 / 𝑥](𝜑 ∧ 𝜓) ↔ ([𝑦 / 𝑥]𝜑 ∧ [𝑦 / 𝑥]𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 [wsb 2068 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 |
This theorem depends on definitions: df-bi 206 df-an 396 df-sb 2069 |
This theorem is referenced by: sb3an 2085 sbbi 2308 sbabel 2940 sbabelOLD 2941 cbvreuw 3365 cbvreu 3370 rmo3f 3664 sbcan 3763 rmo3 3818 inab 4230 difab 4231 exss 5372 inopab 5728 mo5f 30738 iuninc 30801 suppss2f 30875 fmptdF 30895 disjdsct 30937 esumpfinvalf 31944 measiuns 32085 ballotlemodife 32364 xpab 33579 sbn1ALT 34969 sb5ALT 42034 2uasbanh 42070 2uasbanhVD 42420 sb5ALTVD 42422 ellimcabssub0 43048 ichan 44795 |
Copyright terms: Public domain | W3C validator |