| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sban | Structured version Visualization version GIF version | ||
| Description: Conjunction inside and outside of a substitution are equivalent. Compare 19.26 1870. (Contributed by NM, 14-May-1993.) (Proof shortened by Steven Nguyen, 13-Aug-2023.) |
| Ref | Expression |
|---|---|
| sban | ⊢ ([𝑦 / 𝑥](𝜑 ∧ 𝜓) ↔ ([𝑦 / 𝑥]𝜑 ∧ [𝑦 / 𝑥]𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 482 | . . . 4 ⊢ ((𝜑 ∧ 𝜓) → 𝜑) | |
| 2 | 1 | sbimi 2075 | . . 3 ⊢ ([𝑦 / 𝑥](𝜑 ∧ 𝜓) → [𝑦 / 𝑥]𝜑) |
| 3 | simpr 484 | . . . 4 ⊢ ((𝜑 ∧ 𝜓) → 𝜓) | |
| 4 | 3 | sbimi 2075 | . . 3 ⊢ ([𝑦 / 𝑥](𝜑 ∧ 𝜓) → [𝑦 / 𝑥]𝜓) |
| 5 | 2, 4 | jca 511 | . 2 ⊢ ([𝑦 / 𝑥](𝜑 ∧ 𝜓) → ([𝑦 / 𝑥]𝜑 ∧ [𝑦 / 𝑥]𝜓)) |
| 6 | pm3.2 469 | . . . 4 ⊢ (𝜑 → (𝜓 → (𝜑 ∧ 𝜓))) | |
| 7 | 6 | sb2imi 2076 | . . 3 ⊢ ([𝑦 / 𝑥]𝜑 → ([𝑦 / 𝑥]𝜓 → [𝑦 / 𝑥](𝜑 ∧ 𝜓))) |
| 8 | 7 | imp 406 | . 2 ⊢ (([𝑦 / 𝑥]𝜑 ∧ [𝑦 / 𝑥]𝜓) → [𝑦 / 𝑥](𝜑 ∧ 𝜓)) |
| 9 | 5, 8 | impbii 209 | 1 ⊢ ([𝑦 / 𝑥](𝜑 ∧ 𝜓) ↔ ([𝑦 / 𝑥]𝜑 ∧ [𝑦 / 𝑥]𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 [wsb 2065 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-sb 2066 |
| This theorem is referenced by: sb3an 2082 sbbi 2307 sbabel 2925 cbvreuwOLD 3389 cbvreu 3400 rmo3f 3708 sbcan 3806 rmo3 3855 inab 4275 difab 4276 exss 5426 inopab 5795 difopab 5796 mo5f 32425 iuninc 32496 suppss2f 32569 fmptdF 32587 disjdsct 32633 esumpfinvalf 34073 measiuns 34214 ballotlemodife 34496 xpab 35720 sbn1ALT 36853 sb5ALT 44522 2uasbanh 44558 2uasbanhVD 44907 sb5ALTVD 44909 ellimcabssub0 45622 ichan 47460 |
| Copyright terms: Public domain | W3C validator |