![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sban | Structured version Visualization version GIF version |
Description: Conjunction inside and outside of a substitution are equivalent. Compare 19.26 1871. (Contributed by NM, 14-May-1993.) (Proof shortened by Steven Nguyen, 13-Aug-2023.) |
Ref | Expression |
---|---|
sban | ⊢ ([𝑦 / 𝑥](𝜑 ∧ 𝜓) ↔ ([𝑦 / 𝑥]𝜑 ∧ [𝑦 / 𝑥]𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 481 | . . . 4 ⊢ ((𝜑 ∧ 𝜓) → 𝜑) | |
2 | 1 | sbimi 2075 | . . 3 ⊢ ([𝑦 / 𝑥](𝜑 ∧ 𝜓) → [𝑦 / 𝑥]𝜑) |
3 | simpr 483 | . . . 4 ⊢ ((𝜑 ∧ 𝜓) → 𝜓) | |
4 | 3 | sbimi 2075 | . . 3 ⊢ ([𝑦 / 𝑥](𝜑 ∧ 𝜓) → [𝑦 / 𝑥]𝜓) |
5 | 2, 4 | jca 510 | . 2 ⊢ ([𝑦 / 𝑥](𝜑 ∧ 𝜓) → ([𝑦 / 𝑥]𝜑 ∧ [𝑦 / 𝑥]𝜓)) |
6 | pm3.2 468 | . . . 4 ⊢ (𝜑 → (𝜓 → (𝜑 ∧ 𝜓))) | |
7 | 6 | sb2imi 2076 | . . 3 ⊢ ([𝑦 / 𝑥]𝜑 → ([𝑦 / 𝑥]𝜓 → [𝑦 / 𝑥](𝜑 ∧ 𝜓))) |
8 | 7 | imp 405 | . 2 ⊢ (([𝑦 / 𝑥]𝜑 ∧ [𝑦 / 𝑥]𝜓) → [𝑦 / 𝑥](𝜑 ∧ 𝜓)) |
9 | 5, 8 | impbii 208 | 1 ⊢ ([𝑦 / 𝑥](𝜑 ∧ 𝜓) ↔ ([𝑦 / 𝑥]𝜑 ∧ [𝑦 / 𝑥]𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 394 [wsb 2065 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 |
This theorem depends on definitions: df-bi 206 df-an 395 df-sb 2066 |
This theorem is referenced by: sb3an 2082 sbbi 2302 sbabel 2936 sbabelOLD 2937 cbvreuwOLD 3410 cbvreu 3422 rmo3f 3731 sbcan 3830 rmo3 3884 inab 4300 difab 4301 exss 5464 inopab 5830 difopab 5831 mo5f 31994 iuninc 32057 suppss2f 32128 fmptdF 32146 disjdsct 32189 esumpfinvalf 33370 measiuns 33511 ballotlemodife 33792 xpab 34997 sbn1ALT 36042 sb5ALT 43590 2uasbanh 43626 2uasbanhVD 43976 sb5ALTVD 43978 ellimcabssub0 44633 ichan 46423 |
Copyright terms: Public domain | W3C validator |