MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sban Structured version   Visualization version   GIF version

Theorem sban 2085
Description: Conjunction inside and outside of a substitution are equivalent. Compare 19.26 1871. (Contributed by NM, 14-May-1993.) (Proof shortened by Steven Nguyen, 13-Aug-2023.)
Assertion
Ref Expression
sban ([𝑦 / 𝑥](𝜑𝜓) ↔ ([𝑦 / 𝑥]𝜑 ∧ [𝑦 / 𝑥]𝜓))

Proof of Theorem sban
StepHypRef Expression
1 simpl 482 . . . 4 ((𝜑𝜓) → 𝜑)
21sbimi 2079 . . 3 ([𝑦 / 𝑥](𝜑𝜓) → [𝑦 / 𝑥]𝜑)
3 simpr 484 . . . 4 ((𝜑𝜓) → 𝜓)
43sbimi 2079 . . 3 ([𝑦 / 𝑥](𝜑𝜓) → [𝑦 / 𝑥]𝜓)
52, 4jca 511 . 2 ([𝑦 / 𝑥](𝜑𝜓) → ([𝑦 / 𝑥]𝜑 ∧ [𝑦 / 𝑥]𝜓))
6 pm3.2 469 . . . 4 (𝜑 → (𝜓 → (𝜑𝜓)))
76sb2imi 2080 . . 3 ([𝑦 / 𝑥]𝜑 → ([𝑦 / 𝑥]𝜓 → [𝑦 / 𝑥](𝜑𝜓)))
87imp 406 . 2 (([𝑦 / 𝑥]𝜑 ∧ [𝑦 / 𝑥]𝜓) → [𝑦 / 𝑥](𝜑𝜓))
95, 8impbii 209 1 ([𝑦 / 𝑥](𝜑𝜓) ↔ ([𝑦 / 𝑥]𝜑 ∧ [𝑦 / 𝑥]𝜓))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  [wsb 2067
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1781  df-sb 2068
This theorem is referenced by:  sb3an  2086  sbbi  2311  sbabel  2928  cbvreu  3388  rmo3f  3689  sbcan  3787  rmo3  3836  inab  4258  difab  4259  exss  5406  inopab  5773  difopab  5774  mo5f  32470  iuninc  32542  suppss2f  32622  fmptdF  32640  disjdsct  32688  esumpfinvalf  34110  measiuns  34251  ballotlemodife  34532  xpab  35791  sbn1ALT  36923  sb5ALT  44642  2uasbanh  44678  2uasbanhVD  45027  sb5ALTVD  45029  ellimcabssub0  45741  ichan  47579
  Copyright terms: Public domain W3C validator