MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sban Structured version   Visualization version   GIF version

Theorem sban 2081
Description: Conjunction inside and outside of a substitution are equivalent. Compare 19.26 1871. (Contributed by NM, 14-May-1993.) (Proof shortened by Steven Nguyen, 13-Aug-2023.)
Assertion
Ref Expression
sban ([𝑦 / 𝑥](𝜑𝜓) ↔ ([𝑦 / 𝑥]𝜑 ∧ [𝑦 / 𝑥]𝜓))

Proof of Theorem sban
StepHypRef Expression
1 simpl 481 . . . 4 ((𝜑𝜓) → 𝜑)
21sbimi 2075 . . 3 ([𝑦 / 𝑥](𝜑𝜓) → [𝑦 / 𝑥]𝜑)
3 simpr 483 . . . 4 ((𝜑𝜓) → 𝜓)
43sbimi 2075 . . 3 ([𝑦 / 𝑥](𝜑𝜓) → [𝑦 / 𝑥]𝜓)
52, 4jca 510 . 2 ([𝑦 / 𝑥](𝜑𝜓) → ([𝑦 / 𝑥]𝜑 ∧ [𝑦 / 𝑥]𝜓))
6 pm3.2 468 . . . 4 (𝜑 → (𝜓 → (𝜑𝜓)))
76sb2imi 2076 . . 3 ([𝑦 / 𝑥]𝜑 → ([𝑦 / 𝑥]𝜓 → [𝑦 / 𝑥](𝜑𝜓)))
87imp 405 . 2 (([𝑦 / 𝑥]𝜑 ∧ [𝑦 / 𝑥]𝜓) → [𝑦 / 𝑥](𝜑𝜓))
95, 8impbii 208 1 ([𝑦 / 𝑥](𝜑𝜓) ↔ ([𝑦 / 𝑥]𝜑 ∧ [𝑦 / 𝑥]𝜓))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 394  [wsb 2065
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809
This theorem depends on definitions:  df-bi 206  df-an 395  df-sb 2066
This theorem is referenced by:  sb3an  2082  sbbi  2302  sbabel  2936  sbabelOLD  2937  cbvreuwOLD  3410  cbvreu  3422  rmo3f  3731  sbcan  3830  rmo3  3884  inab  4300  difab  4301  exss  5464  inopab  5830  difopab  5831  mo5f  31994  iuninc  32057  suppss2f  32128  fmptdF  32146  disjdsct  32189  esumpfinvalf  33370  measiuns  33511  ballotlemodife  33792  xpab  34997  sbn1ALT  36042  sb5ALT  43590  2uasbanh  43626  2uasbanhVD  43976  sb5ALTVD  43978  ellimcabssub0  44633  ichan  46423
  Copyright terms: Public domain W3C validator