MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sban Structured version   Visualization version   GIF version

Theorem sban 2081
Description: Conjunction inside and outside of a substitution are equivalent. Compare 19.26 1870. (Contributed by NM, 14-May-1993.) (Proof shortened by Steven Nguyen, 13-Aug-2023.)
Assertion
Ref Expression
sban ([𝑦 / 𝑥](𝜑𝜓) ↔ ([𝑦 / 𝑥]𝜑 ∧ [𝑦 / 𝑥]𝜓))

Proof of Theorem sban
StepHypRef Expression
1 simpl 482 . . . 4 ((𝜑𝜓) → 𝜑)
21sbimi 2075 . . 3 ([𝑦 / 𝑥](𝜑𝜓) → [𝑦 / 𝑥]𝜑)
3 simpr 484 . . . 4 ((𝜑𝜓) → 𝜓)
43sbimi 2075 . . 3 ([𝑦 / 𝑥](𝜑𝜓) → [𝑦 / 𝑥]𝜓)
52, 4jca 511 . 2 ([𝑦 / 𝑥](𝜑𝜓) → ([𝑦 / 𝑥]𝜑 ∧ [𝑦 / 𝑥]𝜓))
6 pm3.2 469 . . . 4 (𝜑 → (𝜓 → (𝜑𝜓)))
76sb2imi 2076 . . 3 ([𝑦 / 𝑥]𝜑 → ([𝑦 / 𝑥]𝜓 → [𝑦 / 𝑥](𝜑𝜓)))
87imp 406 . 2 (([𝑦 / 𝑥]𝜑 ∧ [𝑦 / 𝑥]𝜓) → [𝑦 / 𝑥](𝜑𝜓))
95, 8impbii 209 1 ([𝑦 / 𝑥](𝜑𝜓) ↔ ([𝑦 / 𝑥]𝜑 ∧ [𝑦 / 𝑥]𝜓))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  [wsb 2065
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809
This theorem depends on definitions:  df-bi 207  df-an 396  df-sb 2066
This theorem is referenced by:  sb3an  2082  sbbi  2307  sbabel  2924  cbvreu  3397  rmo3f  3705  sbcan  3803  rmo3  3852  inab  4272  difab  4273  exss  5423  inopab  5792  difopab  5793  mo5f  32418  iuninc  32489  suppss2f  32562  fmptdF  32580  disjdsct  32626  esumpfinvalf  34066  measiuns  34207  ballotlemodife  34489  xpab  35713  sbn1ALT  36846  sb5ALT  44515  2uasbanh  44551  2uasbanhVD  44900  sb5ALTVD  44902  ellimcabssub0  45615  ichan  47456
  Copyright terms: Public domain W3C validator