MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sban Structured version   Visualization version   GIF version

Theorem sban 2087
Description: Conjunction inside and outside of a substitution are equivalent. Compare 19.26 1877. (Contributed by NM, 14-May-1993.) (Proof shortened by Steven Nguyen, 13-Aug-2023.)
Assertion
Ref Expression
sban ([𝑦 / 𝑥](𝜑𝜓) ↔ ([𝑦 / 𝑥]𝜑 ∧ [𝑦 / 𝑥]𝜓))

Proof of Theorem sban
StepHypRef Expression
1 simpl 483 . . . 4 ((𝜑𝜓) → 𝜑)
21sbimi 2081 . . 3 ([𝑦 / 𝑥](𝜑𝜓) → [𝑦 / 𝑥]𝜑)
3 simpr 485 . . . 4 ((𝜑𝜓) → 𝜓)
43sbimi 2081 . . 3 ([𝑦 / 𝑥](𝜑𝜓) → [𝑦 / 𝑥]𝜓)
52, 4jca 512 . 2 ([𝑦 / 𝑥](𝜑𝜓) → ([𝑦 / 𝑥]𝜑 ∧ [𝑦 / 𝑥]𝜓))
6 pm3.2 470 . . . 4 (𝜑 → (𝜓 → (𝜑𝜓)))
76sb2imi 2082 . . 3 ([𝑦 / 𝑥]𝜑 → ([𝑦 / 𝑥]𝜓 → [𝑦 / 𝑥](𝜑𝜓)))
87imp 407 . 2 (([𝑦 / 𝑥]𝜑 ∧ [𝑦 / 𝑥]𝜓) → [𝑦 / 𝑥](𝜑𝜓))
95, 8impbii 208 1 ([𝑦 / 𝑥](𝜑𝜓) ↔ ([𝑦 / 𝑥]𝜑 ∧ [𝑦 / 𝑥]𝜓))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 396  [wsb 2071
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816
This theorem depends on definitions:  df-bi 206  df-an 397  df-sb 2072
This theorem is referenced by:  sb3an  2088  sbbi  2309  sbabel  2943  sbabelOLD  2944  cbvreuw  3374  cbvreu  3379  rmo3f  3673  sbcan  3772  rmo3  3827  inab  4239  difab  4240  exss  5382  inopab  5738  mo5f  30846  iuninc  30909  suppss2f  30983  fmptdF  31002  disjdsct  31044  esumpfinvalf  32053  measiuns  32194  ballotlemodife  32473  xpab  33686  sbn1ALT  35051  sb5ALT  42127  2uasbanh  42163  2uasbanhVD  42513  sb5ALTVD  42515  ellimcabssub0  43140  ichan  44886
  Copyright terms: Public domain W3C validator