MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sban Structured version   Visualization version   GIF version

Theorem sban 2084
Description: Conjunction inside and outside of a substitution are equivalent. Compare 19.26 1874. (Contributed by NM, 14-May-1993.) (Proof shortened by Steven Nguyen, 13-Aug-2023.)
Assertion
Ref Expression
sban ([𝑦 / 𝑥](𝜑𝜓) ↔ ([𝑦 / 𝑥]𝜑 ∧ [𝑦 / 𝑥]𝜓))

Proof of Theorem sban
StepHypRef Expression
1 simpl 482 . . . 4 ((𝜑𝜓) → 𝜑)
21sbimi 2078 . . 3 ([𝑦 / 𝑥](𝜑𝜓) → [𝑦 / 𝑥]𝜑)
3 simpr 484 . . . 4 ((𝜑𝜓) → 𝜓)
43sbimi 2078 . . 3 ([𝑦 / 𝑥](𝜑𝜓) → [𝑦 / 𝑥]𝜓)
52, 4jca 511 . 2 ([𝑦 / 𝑥](𝜑𝜓) → ([𝑦 / 𝑥]𝜑 ∧ [𝑦 / 𝑥]𝜓))
6 pm3.2 469 . . . 4 (𝜑 → (𝜓 → (𝜑𝜓)))
76sb2imi 2079 . . 3 ([𝑦 / 𝑥]𝜑 → ([𝑦 / 𝑥]𝜓 → [𝑦 / 𝑥](𝜑𝜓)))
87imp 406 . 2 (([𝑦 / 𝑥]𝜑 ∧ [𝑦 / 𝑥]𝜓) → [𝑦 / 𝑥](𝜑𝜓))
95, 8impbii 208 1 ([𝑦 / 𝑥](𝜑𝜓) ↔ ([𝑦 / 𝑥]𝜑 ∧ [𝑦 / 𝑥]𝜓))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 395  [wsb 2068
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813
This theorem depends on definitions:  df-bi 206  df-an 396  df-sb 2069
This theorem is referenced by:  sb3an  2085  sbbi  2308  sbabel  2940  sbabelOLD  2941  cbvreuw  3365  cbvreu  3370  rmo3f  3664  sbcan  3763  rmo3  3818  inab  4230  difab  4231  exss  5372  inopab  5728  mo5f  30738  iuninc  30801  suppss2f  30875  fmptdF  30895  disjdsct  30937  esumpfinvalf  31944  measiuns  32085  ballotlemodife  32364  xpab  33579  sbn1ALT  34969  sb5ALT  42034  2uasbanh  42070  2uasbanhVD  42420  sb5ALTVD  42422  ellimcabssub0  43048  ichan  44795
  Copyright terms: Public domain W3C validator