Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sban | Structured version Visualization version GIF version |
Description: Conjunction inside and outside of a substitution are equivalent. Compare 19.26 1877. (Contributed by NM, 14-May-1993.) (Proof shortened by Steven Nguyen, 13-Aug-2023.) |
Ref | Expression |
---|---|
sban | ⊢ ([𝑦 / 𝑥](𝜑 ∧ 𝜓) ↔ ([𝑦 / 𝑥]𝜑 ∧ [𝑦 / 𝑥]𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 483 | . . . 4 ⊢ ((𝜑 ∧ 𝜓) → 𝜑) | |
2 | 1 | sbimi 2081 | . . 3 ⊢ ([𝑦 / 𝑥](𝜑 ∧ 𝜓) → [𝑦 / 𝑥]𝜑) |
3 | simpr 485 | . . . 4 ⊢ ((𝜑 ∧ 𝜓) → 𝜓) | |
4 | 3 | sbimi 2081 | . . 3 ⊢ ([𝑦 / 𝑥](𝜑 ∧ 𝜓) → [𝑦 / 𝑥]𝜓) |
5 | 2, 4 | jca 512 | . 2 ⊢ ([𝑦 / 𝑥](𝜑 ∧ 𝜓) → ([𝑦 / 𝑥]𝜑 ∧ [𝑦 / 𝑥]𝜓)) |
6 | pm3.2 470 | . . . 4 ⊢ (𝜑 → (𝜓 → (𝜑 ∧ 𝜓))) | |
7 | 6 | sb2imi 2082 | . . 3 ⊢ ([𝑦 / 𝑥]𝜑 → ([𝑦 / 𝑥]𝜓 → [𝑦 / 𝑥](𝜑 ∧ 𝜓))) |
8 | 7 | imp 407 | . 2 ⊢ (([𝑦 / 𝑥]𝜑 ∧ [𝑦 / 𝑥]𝜓) → [𝑦 / 𝑥](𝜑 ∧ 𝜓)) |
9 | 5, 8 | impbii 208 | 1 ⊢ ([𝑦 / 𝑥](𝜑 ∧ 𝜓) ↔ ([𝑦 / 𝑥]𝜑 ∧ [𝑦 / 𝑥]𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 396 [wsb 2071 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 |
This theorem depends on definitions: df-bi 206 df-an 397 df-sb 2072 |
This theorem is referenced by: sb3an 2088 sbbi 2309 sbabel 2943 sbabelOLD 2944 cbvreuw 3374 cbvreu 3379 rmo3f 3673 sbcan 3772 rmo3 3827 inab 4239 difab 4240 exss 5382 inopab 5738 mo5f 30846 iuninc 30909 suppss2f 30983 fmptdF 31002 disjdsct 31044 esumpfinvalf 32053 measiuns 32194 ballotlemodife 32473 xpab 33686 sbn1ALT 35051 sb5ALT 42127 2uasbanh 42163 2uasbanhVD 42513 sb5ALTVD 42515 ellimcabssub0 43140 ichan 44886 |
Copyright terms: Public domain | W3C validator |