| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sban | Structured version Visualization version GIF version | ||
| Description: Conjunction inside and outside of a substitution are equivalent. Compare 19.26 1870. (Contributed by NM, 14-May-1993.) (Proof shortened by Steven Nguyen, 13-Aug-2023.) |
| Ref | Expression |
|---|---|
| sban | ⊢ ([𝑦 / 𝑥](𝜑 ∧ 𝜓) ↔ ([𝑦 / 𝑥]𝜑 ∧ [𝑦 / 𝑥]𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 482 | . . . 4 ⊢ ((𝜑 ∧ 𝜓) → 𝜑) | |
| 2 | 1 | sbimi 2075 | . . 3 ⊢ ([𝑦 / 𝑥](𝜑 ∧ 𝜓) → [𝑦 / 𝑥]𝜑) |
| 3 | simpr 484 | . . . 4 ⊢ ((𝜑 ∧ 𝜓) → 𝜓) | |
| 4 | 3 | sbimi 2075 | . . 3 ⊢ ([𝑦 / 𝑥](𝜑 ∧ 𝜓) → [𝑦 / 𝑥]𝜓) |
| 5 | 2, 4 | jca 511 | . 2 ⊢ ([𝑦 / 𝑥](𝜑 ∧ 𝜓) → ([𝑦 / 𝑥]𝜑 ∧ [𝑦 / 𝑥]𝜓)) |
| 6 | pm3.2 469 | . . . 4 ⊢ (𝜑 → (𝜓 → (𝜑 ∧ 𝜓))) | |
| 7 | 6 | sb2imi 2076 | . . 3 ⊢ ([𝑦 / 𝑥]𝜑 → ([𝑦 / 𝑥]𝜓 → [𝑦 / 𝑥](𝜑 ∧ 𝜓))) |
| 8 | 7 | imp 406 | . 2 ⊢ (([𝑦 / 𝑥]𝜑 ∧ [𝑦 / 𝑥]𝜓) → [𝑦 / 𝑥](𝜑 ∧ 𝜓)) |
| 9 | 5, 8 | impbii 209 | 1 ⊢ ([𝑦 / 𝑥](𝜑 ∧ 𝜓) ↔ ([𝑦 / 𝑥]𝜑 ∧ [𝑦 / 𝑥]𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 [wsb 2065 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-sb 2066 |
| This theorem is referenced by: sb3an 2082 sbbi 2307 sbabel 2924 cbvreu 3397 rmo3f 3705 sbcan 3803 rmo3 3852 inab 4272 difab 4273 exss 5423 inopab 5792 difopab 5793 mo5f 32418 iuninc 32489 suppss2f 32562 fmptdF 32580 disjdsct 32626 esumpfinvalf 34066 measiuns 34207 ballotlemodife 34489 xpab 35713 sbn1ALT 36846 sb5ALT 44515 2uasbanh 44551 2uasbanhVD 44900 sb5ALTVD 44902 ellimcabssub0 45615 ichan 47456 |
| Copyright terms: Public domain | W3C validator |