![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sban | Structured version Visualization version GIF version |
Description: Conjunction inside and outside of a substitution are equivalent. For a version requiring disjoint variables, but fewer axioms, see sbanv 2281. (Contributed by NM, 14-May-1993.) |
Ref | Expression |
---|---|
sban | ⊢ ([𝑦 / 𝑥](𝜑 ∧ 𝜓) ↔ ([𝑦 / 𝑥]𝜑 ∧ [𝑦 / 𝑥]𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbn 2467 | . . 3 ⊢ ([𝑦 / 𝑥] ¬ (𝜑 → ¬ 𝜓) ↔ ¬ [𝑦 / 𝑥](𝜑 → ¬ 𝜓)) | |
2 | sbim 2471 | . . . 4 ⊢ ([𝑦 / 𝑥](𝜑 → ¬ 𝜓) ↔ ([𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥] ¬ 𝜓)) | |
3 | sbn 2467 | . . . . 5 ⊢ ([𝑦 / 𝑥] ¬ 𝜓 ↔ ¬ [𝑦 / 𝑥]𝜓) | |
4 | 3 | imbi2i 328 | . . . 4 ⊢ (([𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥] ¬ 𝜓) ↔ ([𝑦 / 𝑥]𝜑 → ¬ [𝑦 / 𝑥]𝜓)) |
5 | 2, 4 | bitri 267 | . . 3 ⊢ ([𝑦 / 𝑥](𝜑 → ¬ 𝜓) ↔ ([𝑦 / 𝑥]𝜑 → ¬ [𝑦 / 𝑥]𝜓)) |
6 | 1, 5 | xchbinx 326 | . 2 ⊢ ([𝑦 / 𝑥] ¬ (𝜑 → ¬ 𝜓) ↔ ¬ ([𝑦 / 𝑥]𝜑 → ¬ [𝑦 / 𝑥]𝜓)) |
7 | df-an 387 | . . 3 ⊢ ((𝜑 ∧ 𝜓) ↔ ¬ (𝜑 → ¬ 𝜓)) | |
8 | 7 | sbbii 2019 | . 2 ⊢ ([𝑦 / 𝑥](𝜑 ∧ 𝜓) ↔ [𝑦 / 𝑥] ¬ (𝜑 → ¬ 𝜓)) |
9 | df-an 387 | . 2 ⊢ (([𝑦 / 𝑥]𝜑 ∧ [𝑦 / 𝑥]𝜓) ↔ ¬ ([𝑦 / 𝑥]𝜑 → ¬ [𝑦 / 𝑥]𝜓)) | |
10 | 6, 8, 9 | 3bitr4i 295 | 1 ⊢ ([𝑦 / 𝑥](𝜑 ∧ 𝜓) ↔ ([𝑦 / 𝑥]𝜑 ∧ [𝑦 / 𝑥]𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 198 ∧ wa 386 [wsb 2011 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-10 2135 ax-12 2163 ax-13 2334 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-ex 1824 df-nf 1828 df-sb 2012 |
This theorem is referenced by: sb3an 2476 sbbi 2477 sbabel 2968 cbvreu 3365 rmo3f 3615 sbcan 3696 rmo3OLD 3746 inab 4121 difab 4122 exss 5165 inopab 5500 mo5f 29900 iuninc 29945 suppss2f 30008 fmptdF 30025 disjdsct 30050 esumpfinvalf 30740 measiuns 30882 ballotlemodife 31162 wl-dfrabf 34002 sb5ALT 39695 2uasbanh 39731 2uasbanhVD 40090 sb5ALTVD 40092 ellimcabssub0 40767 |
Copyright terms: Public domain | W3C validator |