Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sb6a | Structured version Visualization version GIF version |
Description: Equivalence for substitution. (Contributed by NM, 2-Jun-1993.) (Proof shortened by Wolf Lammen, 23-Sep-2018.) |
Ref | Expression |
---|---|
sb6a | ⊢ ([𝑦 / 𝑥]𝜑 ↔ ∀𝑥(𝑥 = 𝑦 → [𝑥 / 𝑦]𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbcov 2249 | . 2 ⊢ ([𝑦 / 𝑥][𝑥 / 𝑦]𝜑 ↔ [𝑦 / 𝑥]𝜑) | |
2 | sb6 2088 | . 2 ⊢ ([𝑦 / 𝑥][𝑥 / 𝑦]𝜑 ↔ ∀𝑥(𝑥 = 𝑦 → [𝑥 / 𝑦]𝜑)) | |
3 | 1, 2 | bitr3i 276 | 1 ⊢ ([𝑦 / 𝑥]𝜑 ↔ ∀𝑥(𝑥 = 𝑦 → [𝑥 / 𝑦]𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∀wal 1537 [wsb 2067 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-12 2171 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1783 df-sb 2068 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |