MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbcov Structured version   Visualization version   GIF version

Theorem sbcov 2257
Description: A composition law for substitution. Version of sbco 2515 with a disjoint variable condition using fewer axioms. (Contributed by NM, 14-May-1993.) (Revised by GG, 7-Aug-2023.) (Proof shortened by SN, 26-Aug-2025.)
Assertion
Ref Expression
sbcov ([𝑦 / 𝑥][𝑥 / 𝑦]𝜑 ↔ [𝑦 / 𝑥]𝜑)
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem sbcov
StepHypRef Expression
1 sbequ12r 2253 . 2 (𝑥 = 𝑦 → ([𝑥 / 𝑦]𝜑𝜑))
21sbbiiev 2092 1 ([𝑦 / 𝑥][𝑥 / 𝑦]𝜑 ↔ [𝑦 / 𝑥]𝜑)
Colors of variables: wff setvar class
Syntax hints:  wb 206  [wsb 2064
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-12 2178
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1778  df-sb 2065
This theorem is referenced by:  sb6a  2259
  Copyright terms: Public domain W3C validator