| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sb6 | Structured version Visualization version GIF version | ||
| Description: Alternate definition of substitution when variables are disjoint. Compare Theorem 6.2 of [Quine] p. 40. Also proved as Lemmas 16 and 17 of [Tarski] p. 70. The implication "to the left" also holds without a disjoint variable condition (sb2 2478). Theorem sb6f 2496 replaces the disjoint variable condition with a nonfreeness hypothesis. Theorem sb4b 2474 replaces it with a distinctor antecedent. (Contributed by NM, 18-Aug-1993.) (Proof shortened by Wolf Lammen, 21-Sep-2018.) Revise df-sb 2066. (Revised by BJ, 22-Dec-2020.) Remove use of ax-11 2158. (Revised by Steven Nguyen, 7-Jul-2023.) (Proof shortened by Wolf Lammen, 16-Jul-2023.) |
| Ref | Expression |
|---|---|
| sb6 | ⊢ ([𝑡 / 𝑥]𝜑 ↔ ∀𝑥(𝑥 = 𝑡 → 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-sb 2066 | . 2 ⊢ ([𝑡 / 𝑥]𝜑 ↔ ∀𝑦(𝑦 = 𝑡 → ∀𝑥(𝑥 = 𝑦 → 𝜑))) | |
| 2 | equequ2 2026 | . . . . 5 ⊢ (𝑦 = 𝑡 → (𝑥 = 𝑦 ↔ 𝑥 = 𝑡)) | |
| 3 | 2 | imbi1d 341 | . . . 4 ⊢ (𝑦 = 𝑡 → ((𝑥 = 𝑦 → 𝜑) ↔ (𝑥 = 𝑡 → 𝜑))) |
| 4 | 3 | albidv 1920 | . . 3 ⊢ (𝑦 = 𝑡 → (∀𝑥(𝑥 = 𝑦 → 𝜑) ↔ ∀𝑥(𝑥 = 𝑡 → 𝜑))) |
| 5 | 4 | equsalvw 2004 | . 2 ⊢ (∀𝑦(𝑦 = 𝑡 → ∀𝑥(𝑥 = 𝑦 → 𝜑)) ↔ ∀𝑥(𝑥 = 𝑡 → 𝜑)) |
| 6 | 1, 5 | bitri 275 | 1 ⊢ ([𝑡 / 𝑥]𝜑 ↔ ∀𝑥(𝑥 = 𝑡 → 𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∀wal 1538 [wsb 2065 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2066 |
| This theorem is referenced by: 2sb6 2087 sb1v 2088 sbrimvw 2092 sbbiiev 2093 sbievwOLD 2095 nfs1v 2157 sb4av 2245 sb6a 2259 sb5 2276 sbievOLD 2314 sb8v 2351 sb8f 2352 2eu6 2651 nfabdw 2914 elab6g 3638 disj 4416 iota4 6495 in-ax8 36219 bj-ax12ssb 36653 bj-sbievwd 36777 bj-hbs1 36807 bj-hbsb2av 36809 bj-sbievw1 36840 bj-sbievw2 36841 bj-sbievw 36842 wl-sbid2ft 37540 wl-sb9v 37544 wl-lem-moexsb 37563 absnsb 47032 ichnfimlem 47468 |
| Copyright terms: Public domain | W3C validator |