| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sb6 | Structured version Visualization version GIF version | ||
| Description: Alternate definition of substitution when variables are disjoint. Compare Theorem 6.2 of [Quine] p. 40. Also proved as Lemmas 16 and 17 of [Tarski] p. 70. The implication "to the left" also holds without a disjoint variable condition (sb2 2479). Theorem sb6f 2497 replaces the disjoint variable condition with a nonfreeness hypothesis. Theorem sb4b 2475 replaces it with a distinctor antecedent. (Contributed by NM, 18-Aug-1993.) (Proof shortened by Wolf Lammen, 21-Sep-2018.) Revise df-sb 2068. (Revised by BJ, 22-Dec-2020.) Remove use of ax-11 2160. (Revised by Steven Nguyen, 7-Jul-2023.) (Proof shortened by Wolf Lammen, 16-Jul-2023.) |
| Ref | Expression |
|---|---|
| sb6 | ⊢ ([𝑡 / 𝑥]𝜑 ↔ ∀𝑥(𝑥 = 𝑡 → 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-sb 2068 | . 2 ⊢ ([𝑡 / 𝑥]𝜑 ↔ ∀𝑦(𝑦 = 𝑡 → ∀𝑥(𝑥 = 𝑦 → 𝜑))) | |
| 2 | equequ2 2027 | . . . . 5 ⊢ (𝑦 = 𝑡 → (𝑥 = 𝑦 ↔ 𝑥 = 𝑡)) | |
| 3 | 2 | imbi1d 341 | . . . 4 ⊢ (𝑦 = 𝑡 → ((𝑥 = 𝑦 → 𝜑) ↔ (𝑥 = 𝑡 → 𝜑))) |
| 4 | 3 | albidv 1921 | . . 3 ⊢ (𝑦 = 𝑡 → (∀𝑥(𝑥 = 𝑦 → 𝜑) ↔ ∀𝑥(𝑥 = 𝑡 → 𝜑))) |
| 5 | 4 | equsalvw 2005 | . 2 ⊢ (∀𝑦(𝑦 = 𝑡 → ∀𝑥(𝑥 = 𝑦 → 𝜑)) ↔ ∀𝑥(𝑥 = 𝑡 → 𝜑)) |
| 6 | 1, 5 | bitri 275 | 1 ⊢ ([𝑡 / 𝑥]𝜑 ↔ ∀𝑥(𝑥 = 𝑡 → 𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∀wal 1539 [wsb 2067 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-sb 2068 |
| This theorem is referenced by: 2sb6 2089 sb1v 2090 sbrimvw 2094 sbbiiev 2095 sbievwOLD 2097 nfs1v 2159 sb4av 2247 sb6a 2261 sb5 2278 sbievOLD 2316 sb8v 2353 sb8f 2354 2eu6 2652 nfabdw 2916 elab6g 3619 iota4 6462 axregs 35145 in-ax8 36268 bj-ax12ssb 36702 bj-sbievwd 36826 bj-hbs1 36856 bj-hbsb2av 36858 bj-sbievw1 36889 bj-sbievw2 36890 bj-sbievw 36891 wl-sbid2ft 37589 wl-sb9v 37593 wl-lem-moexsb 37612 absnsb 47137 ichnfimlem 47573 |
| Copyright terms: Public domain | W3C validator |