| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sb6 | Structured version Visualization version GIF version | ||
| Description: Alternate definition of substitution when variables are disjoint. Compare Theorem 6.2 of [Quine] p. 40. Also proved as Lemmas 16 and 17 of [Tarski] p. 70. The implication "to the left" also holds without a disjoint variable condition (sb2 2484). Theorem sb6f 2502 replaces the disjoint variable condition with a nonfreeness hypothesis. Theorem sb4b 2480 replaces it with a distinctor antecedent. (Contributed by NM, 18-Aug-1993.) (Proof shortened by Wolf Lammen, 21-Sep-2018.) Revise df-sb 2066. (Revised by BJ, 22-Dec-2020.) Remove use of ax-11 2158. (Revised by Steven Nguyen, 7-Jul-2023.) (Proof shortened by Wolf Lammen, 16-Jul-2023.) |
| Ref | Expression |
|---|---|
| sb6 | ⊢ ([𝑡 / 𝑥]𝜑 ↔ ∀𝑥(𝑥 = 𝑡 → 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-sb 2066 | . 2 ⊢ ([𝑡 / 𝑥]𝜑 ↔ ∀𝑦(𝑦 = 𝑡 → ∀𝑥(𝑥 = 𝑦 → 𝜑))) | |
| 2 | equequ2 2026 | . . . . 5 ⊢ (𝑦 = 𝑡 → (𝑥 = 𝑦 ↔ 𝑥 = 𝑡)) | |
| 3 | 2 | imbi1d 341 | . . . 4 ⊢ (𝑦 = 𝑡 → ((𝑥 = 𝑦 → 𝜑) ↔ (𝑥 = 𝑡 → 𝜑))) |
| 4 | 3 | albidv 1920 | . . 3 ⊢ (𝑦 = 𝑡 → (∀𝑥(𝑥 = 𝑦 → 𝜑) ↔ ∀𝑥(𝑥 = 𝑡 → 𝜑))) |
| 5 | 4 | equsalvw 2004 | . 2 ⊢ (∀𝑦(𝑦 = 𝑡 → ∀𝑥(𝑥 = 𝑦 → 𝜑)) ↔ ∀𝑥(𝑥 = 𝑡 → 𝜑)) |
| 6 | 1, 5 | bitri 275 | 1 ⊢ ([𝑡 / 𝑥]𝜑 ↔ ∀𝑥(𝑥 = 𝑡 → 𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∀wal 1538 [wsb 2065 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2066 |
| This theorem is referenced by: 2sb6 2087 sb1v 2088 sbrimvw 2092 sbbiiev 2093 sbievwOLD 2095 nfs1v 2157 sb4av 2245 sb6a 2259 sb5 2277 sbievOLD 2316 sb8v 2355 sb8f 2356 2eu6 2657 nfabdw 2921 elab6g 3653 disj 4430 iota4 6517 in-ax8 36247 bj-ax12ssb 36681 bj-sbievwd 36805 bj-hbs1 36835 bj-hbsb2av 36837 bj-sbievw1 36868 bj-sbievw2 36869 bj-sbievw 36870 wl-sbid2ft 37568 wl-sb9v 37572 wl-lem-moexsb 37591 absnsb 47023 ichnfimlem 47444 |
| Copyright terms: Public domain | W3C validator |