Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sb6 | Structured version Visualization version GIF version |
Description: Alternate definition of substitution when variables are disjoint. Compare Theorem 6.2 of [Quine] p. 40. Also proved as Lemmas 16 and 17 of [Tarski] p. 70. The implication "to the left" also holds without a disjoint variable condition (sb2 2480). Theorem sb6f 2501 replaces the disjoint variable condition with a nonfreeness hypothesis. Theorem sb4b 2475 replaces it with a distinctor antecedent. (Contributed by NM, 18-Aug-1993.) (Proof shortened by Wolf Lammen, 21-Sep-2018.) Revise df-sb 2069. (Revised by BJ, 22-Dec-2020.) Remove use of ax-11 2156. (Revised by Steven Nguyen, 7-Jul-2023.) (Proof shortened by Wolf Lammen, 16-Jul-2023.) |
Ref | Expression |
---|---|
sb6 | ⊢ ([𝑡 / 𝑥]𝜑 ↔ ∀𝑥(𝑥 = 𝑡 → 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-sb 2069 | . 2 ⊢ ([𝑡 / 𝑥]𝜑 ↔ ∀𝑦(𝑦 = 𝑡 → ∀𝑥(𝑥 = 𝑦 → 𝜑))) | |
2 | equequ2 2030 | . . . . 5 ⊢ (𝑦 = 𝑡 → (𝑥 = 𝑦 ↔ 𝑥 = 𝑡)) | |
3 | 2 | imbi1d 341 | . . . 4 ⊢ (𝑦 = 𝑡 → ((𝑥 = 𝑦 → 𝜑) ↔ (𝑥 = 𝑡 → 𝜑))) |
4 | 3 | albidv 1924 | . . 3 ⊢ (𝑦 = 𝑡 → (∀𝑥(𝑥 = 𝑦 → 𝜑) ↔ ∀𝑥(𝑥 = 𝑡 → 𝜑))) |
5 | 4 | equsalvw 2008 | . 2 ⊢ (∀𝑦(𝑦 = 𝑡 → ∀𝑥(𝑥 = 𝑦 → 𝜑)) ↔ ∀𝑥(𝑥 = 𝑡 → 𝜑)) |
6 | 1, 5 | bitri 274 | 1 ⊢ ([𝑡 / 𝑥]𝜑 ↔ ∀𝑥(𝑥 = 𝑡 → 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∀wal 1537 [wsb 2068 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1784 df-sb 2069 |
This theorem is referenced by: 2sb6 2090 sb1v 2091 sbrimvlem 2095 sbievw 2097 sbcom3vv 2100 nfs1v 2155 sb4av 2239 sb6a 2253 sb5 2271 sb56OLD 2273 sbiev 2312 2eu6 2658 nfabdw 2929 nfabdwOLD 2930 elab6g 3593 ab0OLD 4306 disj 4378 iota4 6399 bj-ax12ssb 34766 bj-sbievwd 34891 bj-hbs1 34921 bj-hbsb2av 34923 bj-sbievw1 34956 bj-sbievw2 34957 bj-sbievw 34958 wl-lem-moexsb 35650 absnsb 44408 ichnfimlem 44803 |
Copyright terms: Public domain | W3C validator |