| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sb6 | Structured version Visualization version GIF version | ||
| Description: Alternate definition of substitution when variables are disjoint. Compare Theorem 6.2 of [Quine] p. 40. Also proved as Lemmas 16 and 17 of [Tarski] p. 70. The implication "to the left" also holds without a disjoint variable condition (sb2 2477). Theorem sb6f 2495 replaces the disjoint variable condition with a nonfreeness hypothesis. Theorem sb4b 2473 replaces it with a distinctor antecedent. (Contributed by NM, 18-Aug-1993.) (Proof shortened by Wolf Lammen, 21-Sep-2018.) Revise df-sb 2066. (Revised by BJ, 22-Dec-2020.) Remove use of ax-11 2158. (Revised by Steven Nguyen, 7-Jul-2023.) (Proof shortened by Wolf Lammen, 16-Jul-2023.) |
| Ref | Expression |
|---|---|
| sb6 | ⊢ ([𝑡 / 𝑥]𝜑 ↔ ∀𝑥(𝑥 = 𝑡 → 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-sb 2066 | . 2 ⊢ ([𝑡 / 𝑥]𝜑 ↔ ∀𝑦(𝑦 = 𝑡 → ∀𝑥(𝑥 = 𝑦 → 𝜑))) | |
| 2 | equequ2 2026 | . . . . 5 ⊢ (𝑦 = 𝑡 → (𝑥 = 𝑦 ↔ 𝑥 = 𝑡)) | |
| 3 | 2 | imbi1d 341 | . . . 4 ⊢ (𝑦 = 𝑡 → ((𝑥 = 𝑦 → 𝜑) ↔ (𝑥 = 𝑡 → 𝜑))) |
| 4 | 3 | albidv 1920 | . . 3 ⊢ (𝑦 = 𝑡 → (∀𝑥(𝑥 = 𝑦 → 𝜑) ↔ ∀𝑥(𝑥 = 𝑡 → 𝜑))) |
| 5 | 4 | equsalvw 2004 | . 2 ⊢ (∀𝑦(𝑦 = 𝑡 → ∀𝑥(𝑥 = 𝑦 → 𝜑)) ↔ ∀𝑥(𝑥 = 𝑡 → 𝜑)) |
| 6 | 1, 5 | bitri 275 | 1 ⊢ ([𝑡 / 𝑥]𝜑 ↔ ∀𝑥(𝑥 = 𝑡 → 𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∀wal 1538 [wsb 2065 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2066 |
| This theorem is referenced by: 2sb6 2087 sb1v 2088 sbrimvw 2092 sbbiiev 2093 sbievwOLD 2095 nfs1v 2157 sb4av 2245 sb6a 2259 sb5 2276 sbievOLD 2314 sb8v 2351 sb8f 2352 2eu6 2650 nfabdw 2913 elab6g 3632 disj 4409 iota4 6480 in-ax8 36185 bj-ax12ssb 36619 bj-sbievwd 36743 bj-hbs1 36773 bj-hbsb2av 36775 bj-sbievw1 36806 bj-sbievw2 36807 bj-sbievw 36808 wl-sbid2ft 37506 wl-sb9v 37510 wl-lem-moexsb 37529 absnsb 47001 ichnfimlem 47437 |
| Copyright terms: Public domain | W3C validator |