Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sb6 | Structured version Visualization version GIF version |
Description: Alternate definition of substitution when variables are disjoint. Compare Theorem 6.2 of [Quine] p. 40. Also proved as Lemmas 16 and 17 of [Tarski] p. 70. The implication "to the left" also holds without a disjoint variable condition (sb2 2480). Theorem sb6f 2501 replaces the disjoint variable condition with a nonfreeness hypothesis. Theorem sb4b 2475 replaces it with a distinctor antecedent. (Contributed by NM, 18-Aug-1993.) (Proof shortened by Wolf Lammen, 21-Sep-2018.) Revise df-sb 2068. (Revised by BJ, 22-Dec-2020.) Remove use of ax-11 2154. (Revised by Steven Nguyen, 7-Jul-2023.) (Proof shortened by Wolf Lammen, 16-Jul-2023.) |
Ref | Expression |
---|---|
sb6 | ⊢ ([𝑡 / 𝑥]𝜑 ↔ ∀𝑥(𝑥 = 𝑡 → 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-sb 2068 | . 2 ⊢ ([𝑡 / 𝑥]𝜑 ↔ ∀𝑦(𝑦 = 𝑡 → ∀𝑥(𝑥 = 𝑦 → 𝜑))) | |
2 | equequ2 2029 | . . . . 5 ⊢ (𝑦 = 𝑡 → (𝑥 = 𝑦 ↔ 𝑥 = 𝑡)) | |
3 | 2 | imbi1d 342 | . . . 4 ⊢ (𝑦 = 𝑡 → ((𝑥 = 𝑦 → 𝜑) ↔ (𝑥 = 𝑡 → 𝜑))) |
4 | 3 | albidv 1923 | . . 3 ⊢ (𝑦 = 𝑡 → (∀𝑥(𝑥 = 𝑦 → 𝜑) ↔ ∀𝑥(𝑥 = 𝑡 → 𝜑))) |
5 | 4 | equsalvw 2007 | . 2 ⊢ (∀𝑦(𝑦 = 𝑡 → ∀𝑥(𝑥 = 𝑦 → 𝜑)) ↔ ∀𝑥(𝑥 = 𝑡 → 𝜑)) |
6 | 1, 5 | bitri 274 | 1 ⊢ ([𝑡 / 𝑥]𝜑 ↔ ∀𝑥(𝑥 = 𝑡 → 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∀wal 1537 [wsb 2067 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1783 df-sb 2068 |
This theorem is referenced by: 2sb6 2089 sb1v 2090 sbrimvw 2094 sbievw 2095 sbcom3vv 2098 nfs1v 2153 sb4av 2236 sb6a 2250 sb5 2268 sb56OLD 2270 sbiev 2309 sb8v 2350 sb8f 2351 2eu6 2658 nfabdw 2930 nfabdwOLD 2931 elab6g 3600 ab0OLD 4309 disj 4381 iota4 6414 bj-ax12ssb 34839 bj-sbievwd 34964 bj-hbs1 34994 bj-hbsb2av 34996 bj-sbievw1 35029 bj-sbievw2 35030 bj-sbievw 35031 wl-lem-moexsb 35723 absnsb 44521 ichnfimlem 44915 |
Copyright terms: Public domain | W3C validator |