![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sb6 | Structured version Visualization version GIF version |
Description: Alternate definition of substitution when variables are disjoint. Compare Theorem 6.2 of [Quine] p. 40. Also proved as Lemmas 16 and 17 of [Tarski] p. 70. The implication "to the left" also holds without a disjoint variable condition (sb2 2487). Theorem sb6f 2505 replaces the disjoint variable condition with a nonfreeness hypothesis. Theorem sb4b 2483 replaces it with a distinctor antecedent. (Contributed by NM, 18-Aug-1993.) (Proof shortened by Wolf Lammen, 21-Sep-2018.) Revise df-sb 2065. (Revised by BJ, 22-Dec-2020.) Remove use of ax-11 2158. (Revised by Steven Nguyen, 7-Jul-2023.) (Proof shortened by Wolf Lammen, 16-Jul-2023.) |
Ref | Expression |
---|---|
sb6 | ⊢ ([𝑡 / 𝑥]𝜑 ↔ ∀𝑥(𝑥 = 𝑡 → 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-sb 2065 | . 2 ⊢ ([𝑡 / 𝑥]𝜑 ↔ ∀𝑦(𝑦 = 𝑡 → ∀𝑥(𝑥 = 𝑦 → 𝜑))) | |
2 | equequ2 2025 | . . . . 5 ⊢ (𝑦 = 𝑡 → (𝑥 = 𝑦 ↔ 𝑥 = 𝑡)) | |
3 | 2 | imbi1d 341 | . . . 4 ⊢ (𝑦 = 𝑡 → ((𝑥 = 𝑦 → 𝜑) ↔ (𝑥 = 𝑡 → 𝜑))) |
4 | 3 | albidv 1919 | . . 3 ⊢ (𝑦 = 𝑡 → (∀𝑥(𝑥 = 𝑦 → 𝜑) ↔ ∀𝑥(𝑥 = 𝑡 → 𝜑))) |
5 | 4 | equsalvw 2003 | . 2 ⊢ (∀𝑦(𝑦 = 𝑡 → ∀𝑥(𝑥 = 𝑦 → 𝜑)) ↔ ∀𝑥(𝑥 = 𝑡 → 𝜑)) |
6 | 1, 5 | bitri 275 | 1 ⊢ ([𝑡 / 𝑥]𝜑 ↔ ∀𝑥(𝑥 = 𝑡 → 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∀wal 1535 [wsb 2064 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 df-sb 2065 |
This theorem is referenced by: 2sb6 2086 sb1v 2087 sbrimvw 2091 sbbiiev 2092 sbievwOLD 2094 nfs1v 2157 sb4av 2245 sb6a 2259 sb5 2277 sb56OLD 2279 sbievOLD 2319 sb8v 2358 sb8f 2359 2eu6 2660 nfabdw 2932 nfabdwOLD 2933 elab6g 3682 ab0OLD 4403 disj 4473 iota4 6554 in-ax8 36190 bj-ax12ssb 36624 bj-sbievwd 36748 bj-hbs1 36778 bj-hbsb2av 36780 bj-sbievw1 36811 bj-sbievw2 36812 bj-sbievw 36813 wl-sbid2ft 37499 wl-sb9v 37503 wl-lem-moexsb 37522 absnsb 46942 ichnfimlem 47337 |
Copyright terms: Public domain | W3C validator |