|   | Mathbox for Giovanni Mascellani | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > sbceq1ddi | Structured version Visualization version GIF version | ||
| Description: A lemma for eliminating inequality, in inference form. (Contributed by Giovanni Mascellani, 31-May-2019.) | 
| Ref | Expression | 
|---|---|
| sbceq1ddi.1 | ⊢ (𝜑 → 𝐴 = 𝐵) | 
| sbceq1ddi.2 | ⊢ (𝜓 → 𝜃) | 
| sbceq1ddi.3 | ⊢ ([𝐴 / 𝑥]𝜒 ↔ 𝜃) | 
| sbceq1ddi.4 | ⊢ ([𝐵 / 𝑥]𝜒 ↔ 𝜂) | 
| Ref | Expression | 
|---|---|
| sbceq1ddi | ⊢ ((𝜑 ∧ 𝜓) → 𝜂) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | sbceq1ddi.1 | . . . 4 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | 1 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝐴 = 𝐵) | 
| 3 | sbceq1ddi.2 | . . . . 5 ⊢ (𝜓 → 𝜃) | |
| 4 | sbceq1ddi.3 | . . . . 5 ⊢ ([𝐴 / 𝑥]𝜒 ↔ 𝜃) | |
| 5 | 3, 4 | sylibr 234 | . . . 4 ⊢ (𝜓 → [𝐴 / 𝑥]𝜒) | 
| 6 | 5 | adantl 481 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → [𝐴 / 𝑥]𝜒) | 
| 7 | 2, 6 | sbceq1dd 3793 | . 2 ⊢ ((𝜑 ∧ 𝜓) → [𝐵 / 𝑥]𝜒) | 
| 8 | sbceq1ddi.4 | . 2 ⊢ ([𝐵 / 𝑥]𝜒 ↔ 𝜂) | |
| 9 | 7, 8 | sylib 218 | 1 ⊢ ((𝜑 ∧ 𝜓) → 𝜂) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1539 [wsbc 3787 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2707 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1779 df-cleq 2728 df-clel 2815 df-sbc 3788 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |