Mathbox for Giovanni Mascellani |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > sbceq1ddi | Structured version Visualization version GIF version |
Description: A lemma for eliminating inequality, in inference form. (Contributed by Giovanni Mascellani, 31-May-2019.) |
Ref | Expression |
---|---|
sbceq1ddi.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
sbceq1ddi.2 | ⊢ (𝜓 → 𝜃) |
sbceq1ddi.3 | ⊢ ([𝐴 / 𝑥]𝜒 ↔ 𝜃) |
sbceq1ddi.4 | ⊢ ([𝐵 / 𝑥]𝜒 ↔ 𝜂) |
Ref | Expression |
---|---|
sbceq1ddi | ⊢ ((𝜑 ∧ 𝜓) → 𝜂) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbceq1ddi.1 | . . . 4 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | 1 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝐴 = 𝐵) |
3 | sbceq1ddi.2 | . . . . 5 ⊢ (𝜓 → 𝜃) | |
4 | sbceq1ddi.3 | . . . . 5 ⊢ ([𝐴 / 𝑥]𝜒 ↔ 𝜃) | |
5 | 3, 4 | sylibr 233 | . . . 4 ⊢ (𝜓 → [𝐴 / 𝑥]𝜒) |
6 | 5 | adantl 481 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → [𝐴 / 𝑥]𝜒) |
7 | 2, 6 | sbceq1dd 3717 | . 2 ⊢ ((𝜑 ∧ 𝜓) → [𝐵 / 𝑥]𝜒) |
8 | sbceq1ddi.4 | . 2 ⊢ ([𝐵 / 𝑥]𝜒 ↔ 𝜂) | |
9 | 7, 8 | sylib 217 | 1 ⊢ ((𝜑 ∧ 𝜓) → 𝜂) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 [wsbc 3711 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1784 df-cleq 2730 df-clel 2817 df-sbc 3712 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |