MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbceq1dd Structured version   Visualization version   GIF version

Theorem sbceq1dd 3725
Description: Equality theorem for class substitution. (Contributed by Mario Carneiro, 9-Feb-2017.) (Revised by NM, 30-Jun-2018.)
Hypotheses
Ref Expression
sbceq1d.1 (𝜑𝐴 = 𝐵)
sbceq1dd.2 (𝜑[𝐴 / 𝑥]𝜓)
Assertion
Ref Expression
sbceq1dd (𝜑[𝐵 / 𝑥]𝜓)

Proof of Theorem sbceq1dd
StepHypRef Expression
1 sbceq1dd.2 . 2 (𝜑[𝐴 / 𝑥]𝜓)
2 sbceq1d.1 . . 3 (𝜑𝐴 = 𝐵)
32sbceq1d 3724 . 2 (𝜑 → ([𝐴 / 𝑥]𝜓[𝐵 / 𝑥]𝜓))
41, 3mpbid 231 1 (𝜑[𝐵 / 𝑥]𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  [wsbc 3719
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-ext 2710
This theorem depends on definitions:  df-bi 206  df-an 396  df-ex 1786  df-cleq 2731  df-clel 2817  df-sbc 3720
This theorem is referenced by:  prmind2  16371  sdclem2  35879  sbceq1ddi  36260
  Copyright terms: Public domain W3C validator