Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sbceq1dd | Structured version Visualization version GIF version |
Description: Equality theorem for class substitution. (Contributed by Mario Carneiro, 9-Feb-2017.) (Revised by NM, 30-Jun-2018.) |
Ref | Expression |
---|---|
sbceq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
sbceq1dd.2 | ⊢ (𝜑 → [𝐴 / 𝑥]𝜓) |
Ref | Expression |
---|---|
sbceq1dd | ⊢ (𝜑 → [𝐵 / 𝑥]𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbceq1dd.2 | . 2 ⊢ (𝜑 → [𝐴 / 𝑥]𝜓) | |
2 | sbceq1d.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
3 | 2 | sbceq1d 3732 | . 2 ⊢ (𝜑 → ([𝐴 / 𝑥]𝜓 ↔ [𝐵 / 𝑥]𝜓)) |
4 | 1, 3 | mpbid 231 | 1 ⊢ (𝜑 → [𝐵 / 𝑥]𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1540 [wsbc 3727 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2707 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1781 df-cleq 2728 df-clel 2814 df-sbc 3728 |
This theorem is referenced by: prmind2 16487 sdclem2 36013 sbceq1ddi 36394 |
Copyright terms: Public domain | W3C validator |