| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sbceq1dd | Structured version Visualization version GIF version | ||
| Description: Equality theorem for class substitution. (Contributed by Mario Carneiro, 9-Feb-2017.) (Revised by NM, 30-Jun-2018.) |
| Ref | Expression |
|---|---|
| sbceq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| sbceq1dd.2 | ⊢ (𝜑 → [𝐴 / 𝑥]𝜓) |
| Ref | Expression |
|---|---|
| sbceq1dd | ⊢ (𝜑 → [𝐵 / 𝑥]𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbceq1dd.2 | . 2 ⊢ (𝜑 → [𝐴 / 𝑥]𝜓) | |
| 2 | sbceq1d.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 3 | 2 | sbceq1d 3775 | . 2 ⊢ (𝜑 → ([𝐴 / 𝑥]𝜓 ↔ [𝐵 / 𝑥]𝜓)) |
| 4 | 1, 3 | mpbid 232 | 1 ⊢ (𝜑 → [𝐵 / 𝑥]𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 [wsbc 3770 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2728 df-clel 2810 df-sbc 3771 |
| This theorem is referenced by: prmind2 16709 sdclem2 37771 sbceq1ddi 38152 |
| Copyright terms: Public domain | W3C validator |