![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sbceq1dd | Structured version Visualization version GIF version |
Description: Equality theorem for class substitution. (Contributed by Mario Carneiro, 9-Feb-2017.) (Revised by NM, 30-Jun-2018.) |
Ref | Expression |
---|---|
sbceq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
sbceq1dd.2 | ⊢ (𝜑 → [𝐴 / 𝑥]𝜓) |
Ref | Expression |
---|---|
sbceq1dd | ⊢ (𝜑 → [𝐵 / 𝑥]𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbceq1dd.2 | . 2 ⊢ (𝜑 → [𝐴 / 𝑥]𝜓) | |
2 | sbceq1d.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
3 | 2 | sbceq1d 3796 | . 2 ⊢ (𝜑 → ([𝐴 / 𝑥]𝜓 ↔ [𝐵 / 𝑥]𝜓)) |
4 | 1, 3 | mpbid 232 | 1 ⊢ (𝜑 → [𝐵 / 𝑥]𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 [wsbc 3791 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1777 df-cleq 2727 df-clel 2814 df-sbc 3792 |
This theorem is referenced by: prmind2 16719 sdclem2 37729 sbceq1ddi 38110 |
Copyright terms: Public domain | W3C validator |