MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbceq1dd Structured version   Visualization version   GIF version

Theorem sbceq1dd 3810
Description: Equality theorem for class substitution. (Contributed by Mario Carneiro, 9-Feb-2017.) (Revised by NM, 30-Jun-2018.)
Hypotheses
Ref Expression
sbceq1d.1 (𝜑𝐴 = 𝐵)
sbceq1dd.2 (𝜑[𝐴 / 𝑥]𝜓)
Assertion
Ref Expression
sbceq1dd (𝜑[𝐵 / 𝑥]𝜓)

Proof of Theorem sbceq1dd
StepHypRef Expression
1 sbceq1dd.2 . 2 (𝜑[𝐴 / 𝑥]𝜓)
2 sbceq1d.1 . . 3 (𝜑𝐴 = 𝐵)
32sbceq1d 3809 . 2 (𝜑 → ([𝐴 / 𝑥]𝜓[𝐵 / 𝑥]𝜓))
41, 3mpbid 232 1 (𝜑[𝐵 / 𝑥]𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  [wsbc 3804
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1778  df-cleq 2732  df-clel 2819  df-sbc 3805
This theorem is referenced by:  prmind2  16732  sdclem2  37702  sbceq1ddi  38083
  Copyright terms: Public domain W3C validator