Users' Mathboxes Mathbox for Giovanni Mascellani < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sbccom2lem Structured version   Visualization version   GIF version

Theorem sbccom2lem 36209
Description: Lemma for sbccom2 36210. (Contributed by Giovanni Mascellani, 31-May-2019.)
Hypothesis
Ref Expression
sbccom2lem.1 𝐴 ∈ V
Assertion
Ref Expression
sbccom2lem ([𝐴 / 𝑥][𝐵 / 𝑦]𝜑[𝐴 / 𝑥𝐵 / 𝑦][𝐴 / 𝑥]𝜑)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑦,𝐵
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐵(𝑥)

Proof of Theorem sbccom2lem
StepHypRef Expression
1 sbcan 3763 . . . 4 ([𝐴 / 𝑥](𝑦 = 𝐵𝜑) ↔ ([𝐴 / 𝑥]𝑦 = 𝐵[𝐴 / 𝑥]𝜑))
2 sbc5 3739 . . . 4 ([𝐴 / 𝑥](𝑦 = 𝐵𝜑) ↔ ∃𝑥(𝑥 = 𝐴 ∧ (𝑦 = 𝐵𝜑)))
3 sbccom2lem.1 . . . . . 6 𝐴 ∈ V
43csbconstgi 3850 . . . . . 6 𝐴 / 𝑥𝑦 = 𝑦
5 eqid 2738 . . . . . 6 𝐴 / 𝑥𝐵 = 𝐴 / 𝑥𝐵
63, 4, 5sbceqi 4341 . . . . 5 ([𝐴 / 𝑥]𝑦 = 𝐵𝑦 = 𝐴 / 𝑥𝐵)
76anbi1i 623 . . . 4 (([𝐴 / 𝑥]𝑦 = 𝐵[𝐴 / 𝑥]𝜑) ↔ (𝑦 = 𝐴 / 𝑥𝐵[𝐴 / 𝑥]𝜑))
81, 2, 73bitr3i 300 . . 3 (∃𝑥(𝑥 = 𝐴 ∧ (𝑦 = 𝐵𝜑)) ↔ (𝑦 = 𝐴 / 𝑥𝐵[𝐴 / 𝑥]𝜑))
98exbii 1851 . 2 (∃𝑦𝑥(𝑥 = 𝐴 ∧ (𝑦 = 𝐵𝜑)) ↔ ∃𝑦(𝑦 = 𝐴 / 𝑥𝐵[𝐴 / 𝑥]𝜑))
10 sbc5 3739 . . . . 5 ([𝐵 / 𝑦]𝜑 ↔ ∃𝑦(𝑦 = 𝐵𝜑))
1110sbcbii 3772 . . . 4 ([𝐴 / 𝑥][𝐵 / 𝑦]𝜑[𝐴 / 𝑥]𝑦(𝑦 = 𝐵𝜑))
12 sbc5 3739 . . . 4 ([𝐴 / 𝑥]𝑦(𝑦 = 𝐵𝜑) ↔ ∃𝑥(𝑥 = 𝐴 ∧ ∃𝑦(𝑦 = 𝐵𝜑)))
1311, 12bitri 274 . . 3 ([𝐴 / 𝑥][𝐵 / 𝑦]𝜑 ↔ ∃𝑥(𝑥 = 𝐴 ∧ ∃𝑦(𝑦 = 𝐵𝜑)))
14 19.42v 1958 . . . . . 6 (∃𝑦(𝑥 = 𝐴 ∧ (𝑦 = 𝐵𝜑)) ↔ (𝑥 = 𝐴 ∧ ∃𝑦(𝑦 = 𝐵𝜑)))
1514bicomi 223 . . . . 5 ((𝑥 = 𝐴 ∧ ∃𝑦(𝑦 = 𝐵𝜑)) ↔ ∃𝑦(𝑥 = 𝐴 ∧ (𝑦 = 𝐵𝜑)))
1615exbii 1851 . . . 4 (∃𝑥(𝑥 = 𝐴 ∧ ∃𝑦(𝑦 = 𝐵𝜑)) ↔ ∃𝑥𝑦(𝑥 = 𝐴 ∧ (𝑦 = 𝐵𝜑)))
17 excom 2164 . . . 4 (∃𝑥𝑦(𝑥 = 𝐴 ∧ (𝑦 = 𝐵𝜑)) ↔ ∃𝑦𝑥(𝑥 = 𝐴 ∧ (𝑦 = 𝐵𝜑)))
1816, 17bitri 274 . . 3 (∃𝑥(𝑥 = 𝐴 ∧ ∃𝑦(𝑦 = 𝐵𝜑)) ↔ ∃𝑦𝑥(𝑥 = 𝐴 ∧ (𝑦 = 𝐵𝜑)))
1913, 18bitri 274 . 2 ([𝐴 / 𝑥][𝐵 / 𝑦]𝜑 ↔ ∃𝑦𝑥(𝑥 = 𝐴 ∧ (𝑦 = 𝐵𝜑)))
20 sbc5 3739 . 2 ([𝐴 / 𝑥𝐵 / 𝑦][𝐴 / 𝑥]𝜑 ↔ ∃𝑦(𝑦 = 𝐴 / 𝑥𝐵[𝐴 / 𝑥]𝜑))
219, 19, 203bitr4i 302 1 ([𝐴 / 𝑥][𝐵 / 𝑦]𝜑[𝐴 / 𝑥𝐵 / 𝑦][𝐴 / 𝑥]𝜑)
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 395   = wceq 1539  wex 1783  wcel 2108  Vcvv 3422  [wsbc 3711  csb 3828
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-tru 1542  df-ex 1784  df-nf 1788  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-v 3424  df-sbc 3712  df-csb 3829
This theorem is referenced by:  sbccom2  36210
  Copyright terms: Public domain W3C validator