Proof of Theorem sbccom2lem
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | sbcan 3838 | . . . 4
⊢
([𝐴 / 𝑥](𝑦 = 𝐵 ∧ 𝜑) ↔ ([𝐴 / 𝑥]𝑦 = 𝐵 ∧ [𝐴 / 𝑥]𝜑)) | 
| 2 |  | sbc5 3816 | . . . 4
⊢
([𝐴 / 𝑥](𝑦 = 𝐵 ∧ 𝜑) ↔ ∃𝑥(𝑥 = 𝐴 ∧ (𝑦 = 𝐵 ∧ 𝜑))) | 
| 3 |  | sbccom2lem.1 | . . . . . 6
⊢ 𝐴 ∈ V | 
| 4 | 3 | csbconstgi 3920 | . . . . . 6
⊢
⦋𝐴 /
𝑥⦌𝑦 = 𝑦 | 
| 5 |  | eqid 2737 | . . . . . 6
⊢
⦋𝐴 /
𝑥⦌𝐵 = ⦋𝐴 / 𝑥⦌𝐵 | 
| 6 | 3, 4, 5 | sbceqi 4413 | . . . . 5
⊢
([𝐴 / 𝑥]𝑦 = 𝐵 ↔ 𝑦 = ⦋𝐴 / 𝑥⦌𝐵) | 
| 7 | 6 | anbi1i 624 | . . . 4
⊢
(([𝐴 / 𝑥]𝑦 = 𝐵 ∧ [𝐴 / 𝑥]𝜑) ↔ (𝑦 = ⦋𝐴 / 𝑥⦌𝐵 ∧ [𝐴 / 𝑥]𝜑)) | 
| 8 | 1, 2, 7 | 3bitr3i 301 | . . 3
⊢
(∃𝑥(𝑥 = 𝐴 ∧ (𝑦 = 𝐵 ∧ 𝜑)) ↔ (𝑦 = ⦋𝐴 / 𝑥⦌𝐵 ∧ [𝐴 / 𝑥]𝜑)) | 
| 9 | 8 | exbii 1848 | . 2
⊢
(∃𝑦∃𝑥(𝑥 = 𝐴 ∧ (𝑦 = 𝐵 ∧ 𝜑)) ↔ ∃𝑦(𝑦 = ⦋𝐴 / 𝑥⦌𝐵 ∧ [𝐴 / 𝑥]𝜑)) | 
| 10 |  | sbc5 3816 | . . . . 5
⊢
([𝐵 / 𝑦]𝜑 ↔ ∃𝑦(𝑦 = 𝐵 ∧ 𝜑)) | 
| 11 | 10 | sbcbii 3846 | . . . 4
⊢
([𝐴 / 𝑥][𝐵 / 𝑦]𝜑 ↔ [𝐴 / 𝑥]∃𝑦(𝑦 = 𝐵 ∧ 𝜑)) | 
| 12 |  | sbc5 3816 | . . . 4
⊢
([𝐴 / 𝑥]∃𝑦(𝑦 = 𝐵 ∧ 𝜑) ↔ ∃𝑥(𝑥 = 𝐴 ∧ ∃𝑦(𝑦 = 𝐵 ∧ 𝜑))) | 
| 13 | 11, 12 | bitri 275 | . . 3
⊢
([𝐴 / 𝑥][𝐵 / 𝑦]𝜑 ↔ ∃𝑥(𝑥 = 𝐴 ∧ ∃𝑦(𝑦 = 𝐵 ∧ 𝜑))) | 
| 14 |  | 19.42v 1953 | . . . . . 6
⊢
(∃𝑦(𝑥 = 𝐴 ∧ (𝑦 = 𝐵 ∧ 𝜑)) ↔ (𝑥 = 𝐴 ∧ ∃𝑦(𝑦 = 𝐵 ∧ 𝜑))) | 
| 15 | 14 | bicomi 224 | . . . . 5
⊢ ((𝑥 = 𝐴 ∧ ∃𝑦(𝑦 = 𝐵 ∧ 𝜑)) ↔ ∃𝑦(𝑥 = 𝐴 ∧ (𝑦 = 𝐵 ∧ 𝜑))) | 
| 16 | 15 | exbii 1848 | . . . 4
⊢
(∃𝑥(𝑥 = 𝐴 ∧ ∃𝑦(𝑦 = 𝐵 ∧ 𝜑)) ↔ ∃𝑥∃𝑦(𝑥 = 𝐴 ∧ (𝑦 = 𝐵 ∧ 𝜑))) | 
| 17 |  | excom 2162 | . . . 4
⊢
(∃𝑥∃𝑦(𝑥 = 𝐴 ∧ (𝑦 = 𝐵 ∧ 𝜑)) ↔ ∃𝑦∃𝑥(𝑥 = 𝐴 ∧ (𝑦 = 𝐵 ∧ 𝜑))) | 
| 18 | 16, 17 | bitri 275 | . . 3
⊢
(∃𝑥(𝑥 = 𝐴 ∧ ∃𝑦(𝑦 = 𝐵 ∧ 𝜑)) ↔ ∃𝑦∃𝑥(𝑥 = 𝐴 ∧ (𝑦 = 𝐵 ∧ 𝜑))) | 
| 19 | 13, 18 | bitri 275 | . 2
⊢
([𝐴 / 𝑥][𝐵 / 𝑦]𝜑 ↔ ∃𝑦∃𝑥(𝑥 = 𝐴 ∧ (𝑦 = 𝐵 ∧ 𝜑))) | 
| 20 |  | sbc5 3816 | . 2
⊢
([⦋𝐴 / 𝑥⦌𝐵 / 𝑦][𝐴 / 𝑥]𝜑 ↔ ∃𝑦(𝑦 = ⦋𝐴 / 𝑥⦌𝐵 ∧ [𝐴 / 𝑥]𝜑)) | 
| 21 | 9, 19, 20 | 3bitr4i 303 | 1
⊢
([𝐴 / 𝑥][𝐵 / 𝑦]𝜑 ↔ [⦋𝐴 / 𝑥⦌𝐵 / 𝑦][𝐴 / 𝑥]𝜑) |