Proof of Theorem sbccom2lem
Step | Hyp | Ref
| Expression |
1 | | sbcan 3763 |
. . . 4
⊢
([𝐴 / 𝑥](𝑦 = 𝐵 ∧ 𝜑) ↔ ([𝐴 / 𝑥]𝑦 = 𝐵 ∧ [𝐴 / 𝑥]𝜑)) |
2 | | sbc5 3739 |
. . . 4
⊢
([𝐴 / 𝑥](𝑦 = 𝐵 ∧ 𝜑) ↔ ∃𝑥(𝑥 = 𝐴 ∧ (𝑦 = 𝐵 ∧ 𝜑))) |
3 | | sbccom2lem.1 |
. . . . . 6
⊢ 𝐴 ∈ V |
4 | 3 | csbconstgi 3850 |
. . . . . 6
⊢
⦋𝐴 /
𝑥⦌𝑦 = 𝑦 |
5 | | eqid 2738 |
. . . . . 6
⊢
⦋𝐴 /
𝑥⦌𝐵 = ⦋𝐴 / 𝑥⦌𝐵 |
6 | 3, 4, 5 | sbceqi 4341 |
. . . . 5
⊢
([𝐴 / 𝑥]𝑦 = 𝐵 ↔ 𝑦 = ⦋𝐴 / 𝑥⦌𝐵) |
7 | 6 | anbi1i 623 |
. . . 4
⊢
(([𝐴 / 𝑥]𝑦 = 𝐵 ∧ [𝐴 / 𝑥]𝜑) ↔ (𝑦 = ⦋𝐴 / 𝑥⦌𝐵 ∧ [𝐴 / 𝑥]𝜑)) |
8 | 1, 2, 7 | 3bitr3i 300 |
. . 3
⊢
(∃𝑥(𝑥 = 𝐴 ∧ (𝑦 = 𝐵 ∧ 𝜑)) ↔ (𝑦 = ⦋𝐴 / 𝑥⦌𝐵 ∧ [𝐴 / 𝑥]𝜑)) |
9 | 8 | exbii 1851 |
. 2
⊢
(∃𝑦∃𝑥(𝑥 = 𝐴 ∧ (𝑦 = 𝐵 ∧ 𝜑)) ↔ ∃𝑦(𝑦 = ⦋𝐴 / 𝑥⦌𝐵 ∧ [𝐴 / 𝑥]𝜑)) |
10 | | sbc5 3739 |
. . . . 5
⊢
([𝐵 / 𝑦]𝜑 ↔ ∃𝑦(𝑦 = 𝐵 ∧ 𝜑)) |
11 | 10 | sbcbii 3772 |
. . . 4
⊢
([𝐴 / 𝑥][𝐵 / 𝑦]𝜑 ↔ [𝐴 / 𝑥]∃𝑦(𝑦 = 𝐵 ∧ 𝜑)) |
12 | | sbc5 3739 |
. . . 4
⊢
([𝐴 / 𝑥]∃𝑦(𝑦 = 𝐵 ∧ 𝜑) ↔ ∃𝑥(𝑥 = 𝐴 ∧ ∃𝑦(𝑦 = 𝐵 ∧ 𝜑))) |
13 | 11, 12 | bitri 274 |
. . 3
⊢
([𝐴 / 𝑥][𝐵 / 𝑦]𝜑 ↔ ∃𝑥(𝑥 = 𝐴 ∧ ∃𝑦(𝑦 = 𝐵 ∧ 𝜑))) |
14 | | 19.42v 1958 |
. . . . . 6
⊢
(∃𝑦(𝑥 = 𝐴 ∧ (𝑦 = 𝐵 ∧ 𝜑)) ↔ (𝑥 = 𝐴 ∧ ∃𝑦(𝑦 = 𝐵 ∧ 𝜑))) |
15 | 14 | bicomi 223 |
. . . . 5
⊢ ((𝑥 = 𝐴 ∧ ∃𝑦(𝑦 = 𝐵 ∧ 𝜑)) ↔ ∃𝑦(𝑥 = 𝐴 ∧ (𝑦 = 𝐵 ∧ 𝜑))) |
16 | 15 | exbii 1851 |
. . . 4
⊢
(∃𝑥(𝑥 = 𝐴 ∧ ∃𝑦(𝑦 = 𝐵 ∧ 𝜑)) ↔ ∃𝑥∃𝑦(𝑥 = 𝐴 ∧ (𝑦 = 𝐵 ∧ 𝜑))) |
17 | | excom 2164 |
. . . 4
⊢
(∃𝑥∃𝑦(𝑥 = 𝐴 ∧ (𝑦 = 𝐵 ∧ 𝜑)) ↔ ∃𝑦∃𝑥(𝑥 = 𝐴 ∧ (𝑦 = 𝐵 ∧ 𝜑))) |
18 | 16, 17 | bitri 274 |
. . 3
⊢
(∃𝑥(𝑥 = 𝐴 ∧ ∃𝑦(𝑦 = 𝐵 ∧ 𝜑)) ↔ ∃𝑦∃𝑥(𝑥 = 𝐴 ∧ (𝑦 = 𝐵 ∧ 𝜑))) |
19 | 13, 18 | bitri 274 |
. 2
⊢
([𝐴 / 𝑥][𝐵 / 𝑦]𝜑 ↔ ∃𝑦∃𝑥(𝑥 = 𝐴 ∧ (𝑦 = 𝐵 ∧ 𝜑))) |
20 | | sbc5 3739 |
. 2
⊢
([⦋𝐴 / 𝑥⦌𝐵 / 𝑦][𝐴 / 𝑥]𝜑 ↔ ∃𝑦(𝑦 = ⦋𝐴 / 𝑥⦌𝐵 ∧ [𝐴 / 𝑥]𝜑)) |
21 | 9, 19, 20 | 3bitr4i 302 |
1
⊢
([𝐴 / 𝑥][𝐵 / 𝑦]𝜑 ↔ [⦋𝐴 / 𝑥⦌𝐵 / 𝑦][𝐴 / 𝑥]𝜑) |