![]() |
Mathbox for Giovanni Mascellani |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > exlimddvfi | Structured version Visualization version GIF version |
Description: A lemma for eliminating an existential quantifier, in inference form. (Contributed by Giovanni Mascellani, 31-May-2019.) |
Ref | Expression |
---|---|
exlimddvfi.1 | ⊢ (𝜑 → ∃𝑥𝜃) |
exlimddvfi.2 | ⊢ Ⅎ𝑦𝜃 |
exlimddvfi.3 | ⊢ Ⅎ𝑦𝜓 |
exlimddvfi.4 | ⊢ ([𝑦 / 𝑥]𝜃 ↔ 𝜂) |
exlimddvfi.5 | ⊢ ((𝜂 ∧ 𝜓) → 𝜒) |
exlimddvfi.6 | ⊢ Ⅎ𝑦𝜒 |
Ref | Expression |
---|---|
exlimddvfi | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exlimddvfi.1 | . . 3 ⊢ (𝜑 → ∃𝑥𝜃) | |
2 | exlimddvfi.2 | . . . 4 ⊢ Ⅎ𝑦𝜃 | |
3 | 2 | sb8e 2526 | . . 3 ⊢ (∃𝑥𝜃 ↔ ∃𝑦[𝑦 / 𝑥]𝜃) |
4 | 1, 3 | sylib 218 | . 2 ⊢ (𝜑 → ∃𝑦[𝑦 / 𝑥]𝜃) |
5 | exlimddvfi.3 | . 2 ⊢ Ⅎ𝑦𝜓 | |
6 | sbsbc 3808 | . . . 4 ⊢ ([𝑦 / 𝑥]𝜃 ↔ [𝑦 / 𝑥]𝜃) | |
7 | exlimddvfi.4 | . . . 4 ⊢ ([𝑦 / 𝑥]𝜃 ↔ 𝜂) | |
8 | 6, 7 | bitri 275 | . . 3 ⊢ ([𝑦 / 𝑥]𝜃 ↔ 𝜂) |
9 | exlimddvfi.5 | . . 3 ⊢ ((𝜂 ∧ 𝜓) → 𝜒) | |
10 | 8, 9 | sylanb 580 | . 2 ⊢ (([𝑦 / 𝑥]𝜃 ∧ 𝜓) → 𝜒) |
11 | exlimddvfi.6 | . 2 ⊢ Ⅎ𝑦𝜒 | |
12 | 4, 5, 10, 11 | exlimddvf 38081 | 1 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∃wex 1777 Ⅎwnf 1781 [wsb 2064 [wsbc 3804 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-13 2380 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-ex 1778 df-nf 1782 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-sbc 3805 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |