Mathbox for David A. Wheeler |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > sbidd-misc | Structured version Visualization version GIF version |
Description: An identity theorem for substitution. See sbid 2248. See Remark 9.1 in [Megill] p. 447 (p. 15 of the preprint). (Contributed by DAW, 18-Feb-2017.) |
Ref | Expression |
---|---|
sbidd-misc | ⊢ ((𝜑 → [𝑥 / 𝑥]𝜓) ↔ (𝜑 → 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbid 2248 | . 2 ⊢ ([𝑥 / 𝑥]𝜓 ↔ 𝜓) | |
2 | 1 | imbi2i 336 | 1 ⊢ ((𝜑 → [𝑥 / 𝑥]𝜓) ↔ (𝜑 → 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 [wsb 2067 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-12 2171 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1783 df-sb 2068 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |