Users' Mathboxes Mathbox for David A. Wheeler < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sbidd Structured version   Visualization version   GIF version

Theorem sbidd 46306
Description: An identity theorem for substitution. See sbid 2251. See Remark 9.1 in [Megill] p. 447 (p. 15 of the preprint). (Contributed by DAW, 18-Feb-2017.)
Hypothesis
Ref Expression
sbidd.1 (𝜑 → [𝑥 / 𝑥]𝜓)
Assertion
Ref Expression
sbidd (𝜑𝜓)

Proof of Theorem sbidd
StepHypRef Expression
1 sbidd.1 . 2 (𝜑 → [𝑥 / 𝑥]𝜓)
2 sbid 2251 . 2 ([𝑥 / 𝑥]𝜓𝜓)
31, 2sylib 217 1 (𝜑𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  [wsb 2068
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-12 2173
This theorem depends on definitions:  df-bi 206  df-an 396  df-ex 1784  df-sb 2069
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator