![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sbid | Structured version Visualization version GIF version |
Description: An identity theorem for substitution. Remark 9.1 in [Megill] p. 447 (p. 15 of the preprint). (Contributed by NM, 26-May-1993.) (Proof shortened by Wolf Lammen, 30-Sep-2018.) |
Ref | Expression |
---|---|
sbid | ⊢ ([𝑥 / 𝑥]𝜑 ↔ 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | equid 1969 | . 2 ⊢ 𝑥 = 𝑥 | |
2 | sbequ12r 2180 | . 2 ⊢ (𝑥 = 𝑥 → ([𝑥 / 𝑥]𝜑 ↔ 𝜑)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ ([𝑥 / 𝑥]𝜑 ↔ 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 198 [wsb 2015 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1965 ax-12 2106 |
This theorem depends on definitions: df-bi 199 df-an 388 df-ex 1743 df-sb 2016 |
This theorem is referenced by: sbcov 2184 sbid2vw 2186 sbco 2473 sbidm 2476 sbal2OLD 2497 sbal2OLDOLD 2498 abid 2762 sbceq1a 3692 sbcid 3698 frege58bid 39617 ichid 42987 sbidd 44190 sbidd-misc 44191 |
Copyright terms: Public domain | W3C validator |