Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sbid | Structured version Visualization version GIF version |
Description: An identity theorem for substitution. Remark 9.1 in [Megill] p. 447 (p. 15 of the preprint). (Contributed by NM, 26-May-1993.) (Proof shortened by Wolf Lammen, 30-Sep-2018.) |
Ref | Expression |
---|---|
sbid | ⊢ ([𝑥 / 𝑥]𝜑 ↔ 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | equid 2016 | . 2 ⊢ 𝑥 = 𝑥 | |
2 | sbequ12r 2248 | . 2 ⊢ (𝑥 = 𝑥 → ([𝑥 / 𝑥]𝜑 ↔ 𝜑)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ ([𝑥 / 𝑥]𝜑 ↔ 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 [wsb 2068 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-12 2173 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1784 df-sb 2069 |
This theorem is referenced by: sbcov 2252 sbco 2511 sbidm 2514 abid 2719 sbceq1a 3722 sbcid 3728 frege58bid 41399 ichid 44791 sbidd 46306 sbidd-misc 46307 |
Copyright terms: Public domain | W3C validator |