MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  spsv Structured version   Visualization version   GIF version

Theorem spsv 1987
Description: Generalization of antecedent. A trivial weak version of sps 2186 avoiding ax-12 2178. (Contributed by SN, 13-Nov-2025.) (Proof shortened by WL, 19-Nov-2025.)
Hypothesis
Ref Expression
spsv.1 (𝜑𝜓)
Assertion
Ref Expression
spsv (∀𝑥𝜑𝜓)
Distinct variable group:   𝜓,𝑥
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem spsv
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 spsv.1 . . 3 (𝜑𝜓)
21a1i 11 . 2 (𝑥 = 𝑦 → (𝜑𝜓))
32spimvw 1986 1 (∀𝑥𝜑𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1538
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967
This theorem depends on definitions:  df-bi 207  df-ex 1780
This theorem is referenced by:  sbcal  3830
  Copyright terms: Public domain W3C validator