MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  spimvw Structured version   Visualization version   GIF version

Theorem spimvw 2000
Description: A weak form of specialization. Lemma 8 of [KalishMontague] p. 87. Uses only Tarski's FOL axiom schemes. For stronger forms using more axioms, see spimv 2390 and spimfv 2235. (Contributed by NM, 9-Apr-2017.)
Hypothesis
Ref Expression
spimvw.1 (𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
spimvw (∀𝑥𝜑𝜓)
Distinct variable groups:   𝑥,𝑦   𝜓,𝑥
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑦)

Proof of Theorem spimvw
StepHypRef Expression
1 ax-5 1914 . 2 𝜓 → ∀𝑥 ¬ 𝜓)
2 spimvw.1 . 2 (𝑥 = 𝑦 → (𝜑𝜓))
31, 2spimw 1975 1 (∀𝑥𝜑𝜓)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wal 1537
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972
This theorem depends on definitions:  df-bi 206  df-ex 1784
This theorem is referenced by:  spvv  2001  cbvalivw  2011  alcomiw  2047  alcomiwOLD  2048  axc16i  2436  ax9ALT  2733  reu6  3656  disj  4378  el  5287  fvn0ssdmfun  6934  aev-o  36872  axc11next  41913  funressnvmo  44426
  Copyright terms: Public domain W3C validator