| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > spimvw | Structured version Visualization version GIF version | ||
| Description: A weak form of specialization. Lemma 8 of [KalishMontague] p. 87. Uses only Tarski's FOL axiom schemes. For stronger forms using more axioms, see spimv 2395 and spimfv 2239. (Contributed by NM, 9-Apr-2017.) |
| Ref | Expression |
|---|---|
| spimvw.1 | ⊢ (𝑥 = 𝑦 → (𝜑 → 𝜓)) |
| Ref | Expression |
|---|---|
| spimvw | ⊢ (∀𝑥𝜑 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-5 1910 | . 2 ⊢ (¬ 𝜓 → ∀𝑥 ¬ 𝜓) | |
| 2 | spimvw.1 | . 2 ⊢ (𝑥 = 𝑦 → (𝜑 → 𝜓)) | |
| 3 | 1, 2 | spimw 1970 | 1 ⊢ (∀𝑥𝜑 → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∀wal 1538 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 |
| This theorem depends on definitions: df-bi 207 df-ex 1780 |
| This theorem is referenced by: spvv 1996 cbvalivw 2006 alcomimw 2042 axc16i 2441 ax9ALT 2732 reu6 3732 disj 4450 elALT2 5369 fvn0ssdmfun 7094 aev-o 38932 axc11next 44425 funressnvmo 47057 |
| Copyright terms: Public domain | W3C validator |