Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > spimvw | Structured version Visualization version GIF version |
Description: A weak form of specialization. Lemma 8 of [KalishMontague] p. 87. Uses only Tarski's FOL axiom schemes. For stronger forms using more axioms, see spimv 2390 and spimfv 2235. (Contributed by NM, 9-Apr-2017.) |
Ref | Expression |
---|---|
spimvw.1 | ⊢ (𝑥 = 𝑦 → (𝜑 → 𝜓)) |
Ref | Expression |
---|---|
spimvw | ⊢ (∀𝑥𝜑 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-5 1914 | . 2 ⊢ (¬ 𝜓 → ∀𝑥 ¬ 𝜓) | |
2 | spimvw.1 | . 2 ⊢ (𝑥 = 𝑦 → (𝜑 → 𝜓)) | |
3 | 1, 2 | spimw 1975 | 1 ⊢ (∀𝑥𝜑 → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∀wal 1537 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 |
This theorem depends on definitions: df-bi 206 df-ex 1784 |
This theorem is referenced by: spvv 2001 cbvalivw 2011 alcomiw 2047 alcomiwOLD 2048 axc16i 2436 ax9ALT 2733 reu6 3656 disj 4378 el 5287 fvn0ssdmfun 6934 aev-o 36872 axc11next 41913 funressnvmo 44426 |
Copyright terms: Public domain | W3C validator |