Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > spimvw | Structured version Visualization version GIF version |
Description: A weak form of specialization. Lemma 8 of [KalishMontague] p. 87. Uses only Tarski's FOL axiom schemes. For stronger forms using more axioms, see spimv 2388 and spimfv 2231. (Contributed by NM, 9-Apr-2017.) |
Ref | Expression |
---|---|
spimvw.1 | ⊢ (𝑥 = 𝑦 → (𝜑 → 𝜓)) |
Ref | Expression |
---|---|
spimvw | ⊢ (∀𝑥𝜑 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-5 1912 | . 2 ⊢ (¬ 𝜓 → ∀𝑥 ¬ 𝜓) | |
2 | spimvw.1 | . 2 ⊢ (𝑥 = 𝑦 → (𝜑 → 𝜓)) | |
3 | 1, 2 | spimw 1973 | 1 ⊢ (∀𝑥𝜑 → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∀wal 1538 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 |
This theorem depends on definitions: df-bi 206 df-ex 1781 |
This theorem is referenced by: spvv 1999 cbvalivw 2009 alcomiw 2045 axc16i 2434 ax9ALT 2731 reu6 3670 disj 4391 elALT2 5306 fvn0ssdmfun 6991 aev-o 37170 axc11next 42263 funressnvmo 44809 |
Copyright terms: Public domain | W3C validator |