Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sbcal | Structured version Visualization version GIF version |
Description: Move universal quantifier in and out of class substitution. (Contributed by NM, 31-Dec-2016.) (Revised by NM, 18-Aug-2018.) |
Ref | Expression |
---|---|
sbcal | ⊢ ([𝐴 / 𝑦]∀𝑥𝜑 ↔ ∀𝑥[𝐴 / 𝑦]𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbcex 3721 | . 2 ⊢ ([𝐴 / 𝑦]∀𝑥𝜑 → 𝐴 ∈ V) | |
2 | sbcex 3721 | . . 3 ⊢ ([𝐴 / 𝑦]𝜑 → 𝐴 ∈ V) | |
3 | 2 | sps 2180 | . 2 ⊢ (∀𝑥[𝐴 / 𝑦]𝜑 → 𝐴 ∈ V) |
4 | dfsbcq2 3714 | . . 3 ⊢ (𝑧 = 𝐴 → ([𝑧 / 𝑦]∀𝑥𝜑 ↔ [𝐴 / 𝑦]∀𝑥𝜑)) | |
5 | dfsbcq2 3714 | . . . 4 ⊢ (𝑧 = 𝐴 → ([𝑧 / 𝑦]𝜑 ↔ [𝐴 / 𝑦]𝜑)) | |
6 | 5 | albidv 1924 | . . 3 ⊢ (𝑧 = 𝐴 → (∀𝑥[𝑧 / 𝑦]𝜑 ↔ ∀𝑥[𝐴 / 𝑦]𝜑)) |
7 | sbal 2161 | . . 3 ⊢ ([𝑧 / 𝑦]∀𝑥𝜑 ↔ ∀𝑥[𝑧 / 𝑦]𝜑) | |
8 | 4, 6, 7 | vtoclbg 3497 | . 2 ⊢ (𝐴 ∈ V → ([𝐴 / 𝑦]∀𝑥𝜑 ↔ ∀𝑥[𝐴 / 𝑦]𝜑)) |
9 | 1, 3, 8 | pm5.21nii 379 | 1 ⊢ ([𝐴 / 𝑦]∀𝑥𝜑 ↔ ∀𝑥[𝐴 / 𝑦]𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∀wal 1537 = wceq 1539 [wsb 2068 ∈ wcel 2108 Vcvv 3422 [wsbc 3711 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-11 2156 ax-12 2173 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-v 3424 df-sbc 3712 |
This theorem is referenced by: sbcabel 3807 sbcssg 4451 sbcfung 6442 bnj89 32600 bnj110 32738 bnj611 32798 bnj1000 32821 bj-sbeq 35013 bj-sbceqgALT 35014 sbcalf 36199 frege70 41430 frege77 41437 frege116 41476 frege118 41478 trsbc 42049 trsbcVD 42386 sbcssgVD 42392 |
Copyright terms: Public domain | W3C validator |