![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sbcal | Structured version Visualization version GIF version |
Description: Move universal quantifier in and out of class substitution. (Contributed by NM, 31-Dec-2016.) (Revised by NM, 18-Aug-2018.) |
Ref | Expression |
---|---|
sbcal | ⊢ ([𝐴 / 𝑦]∀𝑥𝜑 ↔ ∀𝑥[𝐴 / 𝑦]𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbcex 3801 | . 2 ⊢ ([𝐴 / 𝑦]∀𝑥𝜑 → 𝐴 ∈ V) | |
2 | sbcex 3801 | . . 3 ⊢ ([𝐴 / 𝑦]𝜑 → 𝐴 ∈ V) | |
3 | 2 | sps 2183 | . 2 ⊢ (∀𝑥[𝐴 / 𝑦]𝜑 → 𝐴 ∈ V) |
4 | dfsbcq2 3794 | . . 3 ⊢ (𝑧 = 𝐴 → ([𝑧 / 𝑦]∀𝑥𝜑 ↔ [𝐴 / 𝑦]∀𝑥𝜑)) | |
5 | dfsbcq2 3794 | . . . 4 ⊢ (𝑧 = 𝐴 → ([𝑧 / 𝑦]𝜑 ↔ [𝐴 / 𝑦]𝜑)) | |
6 | 5 | albidv 1918 | . . 3 ⊢ (𝑧 = 𝐴 → (∀𝑥[𝑧 / 𝑦]𝜑 ↔ ∀𝑥[𝐴 / 𝑦]𝜑)) |
7 | sbal 2167 | . . 3 ⊢ ([𝑧 / 𝑦]∀𝑥𝜑 ↔ ∀𝑥[𝑧 / 𝑦]𝜑) | |
8 | 4, 6, 7 | vtoclbg 3557 | . 2 ⊢ (𝐴 ∈ V → ([𝐴 / 𝑦]∀𝑥𝜑 ↔ ∀𝑥[𝐴 / 𝑦]𝜑)) |
9 | 1, 3, 8 | pm5.21nii 378 | 1 ⊢ ([𝐴 / 𝑦]∀𝑥𝜑 ↔ ∀𝑥[𝐴 / 𝑦]𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∀wal 1535 = wceq 1537 [wsb 2062 ∈ wcel 2106 Vcvv 3478 [wsbc 3791 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-11 2155 ax-12 2175 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-v 3480 df-sbc 3792 |
This theorem is referenced by: sbcabel 3887 sbcssg 4526 sbcfung 6592 bnj89 34714 bnj110 34851 bnj611 34911 bnj1000 34934 bj-sbeq 36884 bj-sbceqgALT 36885 sbcalf 38101 frege70 43923 frege77 43930 frege116 43969 frege118 43971 trsbc 44538 trsbcVD 44875 sbcssgVD 44881 |
Copyright terms: Public domain | W3C validator |