Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbcal Structured version   Visualization version   GIF version

Theorem sbcal 3712
 Description: Move universal quantifier in and out of class substitution. (Contributed by NM, 31-Dec-2016.) (Revised by NM, 18-Aug-2018.)
Assertion
Ref Expression
sbcal ([𝐴 / 𝑦]𝑥𝜑 ↔ ∀𝑥[𝐴 / 𝑦]𝜑)
Distinct variable groups:   𝑥,𝐴   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐴(𝑦)

Proof of Theorem sbcal
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 sbcex 3672 . 2 ([𝐴 / 𝑦]𝑥𝜑𝐴 ∈ V)
2 sbcex 3672 . . 3 ([𝐴 / 𝑦]𝜑𝐴 ∈ V)
32sps 2226 . 2 (∀𝑥[𝐴 / 𝑦]𝜑𝐴 ∈ V)
4 dfsbcq2 3665 . . 3 (𝑧 = 𝐴 → ([𝑧 / 𝑦]∀𝑥𝜑[𝐴 / 𝑦]𝑥𝜑))
5 dfsbcq2 3665 . . . 4 (𝑧 = 𝐴 → ([𝑧 / 𝑦]𝜑[𝐴 / 𝑦]𝜑))
65albidv 2019 . . 3 (𝑧 = 𝐴 → (∀𝑥[𝑧 / 𝑦]𝜑 ↔ ∀𝑥[𝐴 / 𝑦]𝜑))
7 sbal 2596 . . 3 ([𝑧 / 𝑦]∀𝑥𝜑 ↔ ∀𝑥[𝑧 / 𝑦]𝜑)
84, 6, 7vtoclbg 3483 . 2 (𝐴 ∈ V → ([𝐴 / 𝑦]𝑥𝜑 ↔ ∀𝑥[𝐴 / 𝑦]𝜑))
91, 3, 8pm5.21nii 370 1 ([𝐴 / 𝑦]𝑥𝜑 ↔ ∀𝑥[𝐴 / 𝑦]𝜑)
 Colors of variables: wff setvar class Syntax hints:   ↔ wb 198  ∀wal 1654   = wceq 1656  [wsb 2067   ∈ wcel 2164  Vcvv 3414  [wsbc 3662 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1894  ax-4 1908  ax-5 2009  ax-6 2075  ax-7 2112  ax-9 2173  ax-10 2192  ax-11 2207  ax-12 2220  ax-13 2389  ax-ext 2803 This theorem depends on definitions:  df-bi 199  df-an 387  df-or 879  df-tru 1660  df-ex 1879  df-nf 1883  df-sb 2068  df-clab 2812  df-cleq 2818  df-clel 2821  df-v 3416  df-sbc 3663 This theorem is referenced by:  sbcabel  3741  sbcssg  4307  sbcfung  6151  bnj89  31332  bnj110  31470  bnj611  31530  bnj1000  31553  bj-sbeq  33416  bj-sbceqgALT  33417  sbcalf  34457  frege70  39066  frege77  39073  frege116  39112  frege118  39114  trsbc  39583  trsbcVD  39930  sbcssgVD  39936
 Copyright terms: Public domain W3C validator