MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbcal Structured version   Visualization version   GIF version

Theorem sbcal 3816
Description: Move universal quantifier in and out of class substitution. (Contributed by NM, 31-Dec-2016.) (Revised by NM, 18-Aug-2018.)
Assertion
Ref Expression
sbcal ([𝐴 / 𝑦]𝑥𝜑 ↔ ∀𝑥[𝐴 / 𝑦]𝜑)
Distinct variable groups:   𝑥,𝐴   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐴(𝑦)

Proof of Theorem sbcal
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 sbcex 3766 . 2 ([𝐴 / 𝑦]𝑥𝜑𝐴 ∈ V)
2 sbcex 3766 . . 3 ([𝐴 / 𝑦]𝜑𝐴 ∈ V)
32spsv 1987 . 2 (∀𝑥[𝐴 / 𝑦]𝜑𝐴 ∈ V)
4 dfsbcq2 3759 . . 3 (𝑧 = 𝐴 → ([𝑧 / 𝑦]∀𝑥𝜑[𝐴 / 𝑦]𝑥𝜑))
5 dfsbcq2 3759 . . . 4 (𝑧 = 𝐴 → ([𝑧 / 𝑦]𝜑[𝐴 / 𝑦]𝜑))
65albidv 1920 . . 3 (𝑧 = 𝐴 → (∀𝑥[𝑧 / 𝑦]𝜑 ↔ ∀𝑥[𝐴 / 𝑦]𝜑))
7 sbal 2170 . . 3 ([𝑧 / 𝑦]∀𝑥𝜑 ↔ ∀𝑥[𝑧 / 𝑦]𝜑)
84, 6, 7vtoclbg 3526 . 2 (𝐴 ∈ V → ([𝐴 / 𝑦]𝑥𝜑 ↔ ∀𝑥[𝐴 / 𝑦]𝜑))
91, 3, 8pm5.21nii 378 1 ([𝐴 / 𝑦]𝑥𝜑 ↔ ∀𝑥[𝐴 / 𝑦]𝜑)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wal 1538   = wceq 1540  [wsb 2065  wcel 2109  Vcvv 3450  [wsbc 3756
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-11 2158  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-v 3452  df-sbc 3757
This theorem is referenced by:  sbcabel  3844  sbcssg  4486  sbcfung  6543  bnj89  34718  bnj110  34855  bnj611  34915  bnj1000  34938  bj-sbeq  36896  bj-sbceqgALT  36897  sbcalf  38115  frege70  43929  frege77  43936  frege116  43975  frege118  43977  trsbc  44537  trsbcVD  44873  sbcssgVD  44879
  Copyright terms: Public domain W3C validator