| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sbcal | Structured version Visualization version GIF version | ||
| Description: Move universal quantifier in and out of class substitution. (Contributed by NM, 31-Dec-2016.) (Revised by NM, 18-Aug-2018.) |
| Ref | Expression |
|---|---|
| sbcal | ⊢ ([𝐴 / 𝑦]∀𝑥𝜑 ↔ ∀𝑥[𝐴 / 𝑦]𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbcex 3746 | . 2 ⊢ ([𝐴 / 𝑦]∀𝑥𝜑 → 𝐴 ∈ V) | |
| 2 | sbcex 3746 | . . 3 ⊢ ([𝐴 / 𝑦]𝜑 → 𝐴 ∈ V) | |
| 3 | 2 | spsv 1988 | . 2 ⊢ (∀𝑥[𝐴 / 𝑦]𝜑 → 𝐴 ∈ V) |
| 4 | dfsbcq2 3739 | . . 3 ⊢ (𝑧 = 𝐴 → ([𝑧 / 𝑦]∀𝑥𝜑 ↔ [𝐴 / 𝑦]∀𝑥𝜑)) | |
| 5 | dfsbcq2 3739 | . . . 4 ⊢ (𝑧 = 𝐴 → ([𝑧 / 𝑦]𝜑 ↔ [𝐴 / 𝑦]𝜑)) | |
| 6 | 5 | albidv 1921 | . . 3 ⊢ (𝑧 = 𝐴 → (∀𝑥[𝑧 / 𝑦]𝜑 ↔ ∀𝑥[𝐴 / 𝑦]𝜑)) |
| 7 | sbal 2172 | . . 3 ⊢ ([𝑧 / 𝑦]∀𝑥𝜑 ↔ ∀𝑥[𝑧 / 𝑦]𝜑) | |
| 8 | 4, 6, 7 | vtoclbg 3510 | . 2 ⊢ (𝐴 ∈ V → ([𝐴 / 𝑦]∀𝑥𝜑 ↔ ∀𝑥[𝐴 / 𝑦]𝜑)) |
| 9 | 1, 3, 8 | pm5.21nii 378 | 1 ⊢ ([𝐴 / 𝑦]∀𝑥𝜑 ↔ ∀𝑥[𝐴 / 𝑦]𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∀wal 1539 = wceq 1541 [wsb 2067 ∈ wcel 2111 Vcvv 3436 [wsbc 3736 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-11 2160 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-v 3438 df-sbc 3737 |
| This theorem is referenced by: sbcabel 3824 sbcssg 4467 sbcfung 6505 bnj89 34733 bnj110 34870 bnj611 34930 bnj1000 34953 bj-sbeq 36945 bj-sbceqgALT 36946 sbcalf 38164 frege70 44036 frege77 44043 frege116 44082 frege118 44084 trsbc 44643 trsbcVD 44979 sbcssgVD 44985 |
| Copyright terms: Public domain | W3C validator |