Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > spvv | Structured version Visualization version GIF version |
Description: Specialization, using implicit substitution. Version of spv 2391 with a disjoint variable condition, which does not require ax-7 2009, ax-12 2169, ax-13 2370. (Contributed by NM, 30-Aug-1993.) (Revised by BJ, 31-May-2019.) |
Ref | Expression |
---|---|
spvv.1 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
spvv | ⊢ (∀𝑥𝜑 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | spvv.1 | . . 3 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
2 | 1 | biimpd 228 | . 2 ⊢ (𝑥 = 𝑦 → (𝜑 → 𝜓)) |
3 | 2 | spimvw 1997 | 1 ⊢ (∀𝑥𝜑 → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∀wal 1537 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 |
This theorem depends on definitions: df-bi 206 df-ex 1780 |
This theorem is referenced by: chvarvv 2000 nfcr 2890 ru 3720 nalset 5246 dfpo2 6214 isowe2 7253 tfisi 7737 findcard2 8985 findcard2OLD 9100 marypha1lem 9236 setind 9536 karden 9697 kmlem4 9955 axgroth3 10633 ramcl 16775 alexsubALTlem3 23245 i1fd 24890 dfon2lem6 33809 trer 34550 bj-ru0 35175 eleq2w2ALT 35264 elsetrecslem 46462 |
Copyright terms: Public domain | W3C validator |