MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  spvv Structured version   Visualization version   GIF version

Theorem spvv 2003
Description: Specialization, using implicit substitution. Version of spv 2394 with a disjoint variable condition, which does not require ax-7 2014, ax-12 2174, ax-13 2373. (Contributed by NM, 30-Aug-1993.) (Revised by BJ, 31-May-2019.)
Hypothesis
Ref Expression
spvv.1 (𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
spvv (∀𝑥𝜑𝜓)
Distinct variable groups:   𝑥,𝑦   𝜓,𝑥
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑦)

Proof of Theorem spvv
StepHypRef Expression
1 spvv.1 . . 3 (𝑥 = 𝑦 → (𝜑𝜓))
21biimpd 228 . 2 (𝑥 = 𝑦 → (𝜑𝜓))
32spimvw 2002 1 (∀𝑥𝜑𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wal 1539
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974
This theorem depends on definitions:  df-bi 206  df-ex 1786
This theorem is referenced by:  chvarvv  2005  nfcr  2893  ru  3718  nalset  5240  dfpo2  6196  isowe2  7214  tfisi  7693  findcard2  8912  findcard2OLD  9017  marypha1lem  9153  setind  9475  karden  9637  kmlem4  9893  axgroth3  10571  ramcl  16711  alexsubALTlem3  23181  i1fd  24826  dfon2lem6  33743  trer  34484  bj-ru0  35110  eleq2w2ALT  35199  elsetrecslem  46356
  Copyright terms: Public domain W3C validator