MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  spvv Structured version   Visualization version   GIF version

Theorem spvv 1996
Description: Specialization, using implicit substitution. Version of spv 2397 with a disjoint variable condition, which does not require ax-7 2007, ax-12 2177, ax-13 2376. (Contributed by NM, 30-Aug-1993.) (Revised by BJ, 31-May-2019.)
Hypothesis
Ref Expression
spvv.1 (𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
spvv (∀𝑥𝜑𝜓)
Distinct variable groups:   𝑥,𝑦   𝜓,𝑥
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑦)

Proof of Theorem spvv
StepHypRef Expression
1 spvv.1 . . 3 (𝑥 = 𝑦 → (𝜑𝜓))
21biimpd 229 . 2 (𝑥 = 𝑦 → (𝜑𝜓))
32spimvw 1995 1 (∀𝑥𝜑𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wal 1538
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967
This theorem depends on definitions:  df-bi 207  df-ex 1780
This theorem is referenced by:  chvarvv  1998  ru0  2127  nfcr  2888  ruOLD  3764  nalset  5283  dfpo2  6285  isowe2  7343  tfisi  7854  findcard2  9178  marypha1lem  9445  setind  9748  karden  9909  kmlem4  10168  axgroth3  10845  ramcl  17049  cnsubrglem  21384  alexsubALTlem3  23987  i1fd  25634  dfon2lem6  35806  trer  36334  eleq2w2ALT  37065  modelaxreplem1  45003  elsetrecslem  49563
  Copyright terms: Public domain W3C validator