MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  spvv Structured version   Visualization version   GIF version

Theorem spvv 1996
Description: Specialization, using implicit substitution. Version of spv 2401 with a disjoint variable condition, which does not require ax-7 2007, ax-12 2178, ax-13 2380. (Contributed by NM, 30-Aug-1993.) (Revised by BJ, 31-May-2019.)
Hypothesis
Ref Expression
spvv.1 (𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
spvv (∀𝑥𝜑𝜓)
Distinct variable groups:   𝑥,𝑦   𝜓,𝑥
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑦)

Proof of Theorem spvv
StepHypRef Expression
1 spvv.1 . . 3 (𝑥 = 𝑦 → (𝜑𝜓))
21biimpd 229 . 2 (𝑥 = 𝑦 → (𝜑𝜓))
32spimvw 1995 1 (∀𝑥𝜑𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wal 1535
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967
This theorem depends on definitions:  df-bi 207  df-ex 1778
This theorem is referenced by:  chvarvv  1998  ru0  2127  nfcr  2898  ruOLD  3803  nalset  5331  dfpo2  6327  isowe2  7386  tfisi  7896  findcard2  9230  marypha1lem  9502  setind  9803  karden  9964  kmlem4  10223  axgroth3  10900  ramcl  17076  cnsubrglem  21457  alexsubALTlem3  24078  i1fd  25735  dfon2lem6  35752  trer  36282  eleq2w2ALT  37013  elsetrecslem  48791
  Copyright terms: Public domain W3C validator