![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > spvv | Structured version Visualization version GIF version |
Description: Specialization, using implicit substitution. Version of spv 2395 with a disjoint variable condition, which does not require ax-7 2004, ax-12 2174, ax-13 2374. (Contributed by NM, 30-Aug-1993.) (Revised by BJ, 31-May-2019.) |
Ref | Expression |
---|---|
spvv.1 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
spvv | ⊢ (∀𝑥𝜑 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | spvv.1 | . . 3 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
2 | 1 | biimpd 229 | . 2 ⊢ (𝑥 = 𝑦 → (𝜑 → 𝜓)) |
3 | 2 | spimvw 1992 | 1 ⊢ (∀𝑥𝜑 → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∀wal 1534 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 |
This theorem depends on definitions: df-bi 207 df-ex 1776 |
This theorem is referenced by: chvarvv 1995 ru0 2124 nfcr 2892 ruOLD 3789 nalset 5318 dfpo2 6317 isowe2 7369 tfisi 7879 findcard2 9202 marypha1lem 9470 setind 9771 karden 9932 kmlem4 10191 axgroth3 10868 ramcl 17062 cnsubrglem 21451 alexsubALTlem3 24072 i1fd 25729 dfon2lem6 35769 trer 36298 eleq2w2ALT 37029 modelaxreplem1 44942 elsetrecslem 48929 |
Copyright terms: Public domain | W3C validator |