| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > spvv | Structured version Visualization version GIF version | ||
| Description: Specialization, using implicit substitution. Version of spv 2391 with a disjoint variable condition, which does not require ax-7 2008, ax-12 2178, ax-13 2370. (Contributed by NM, 30-Aug-1993.) (Revised by BJ, 31-May-2019.) |
| Ref | Expression |
|---|---|
| spvv.1 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| spvv | ⊢ (∀𝑥𝜑 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | spvv.1 | . . 3 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
| 2 | 1 | biimpd 229 | . 2 ⊢ (𝑥 = 𝑦 → (𝜑 → 𝜓)) |
| 3 | 2 | spimvw 1986 | 1 ⊢ (∀𝑥𝜑 → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∀wal 1538 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 |
| This theorem depends on definitions: df-bi 207 df-ex 1780 |
| This theorem is referenced by: chvarvv 1989 ru0 2128 nfcr 2881 ruOLD 3752 nalset 5268 dfpo2 6269 isowe2 7325 tfisi 7835 findcard2 9128 marypha1lem 9384 setind 9687 karden 9848 kmlem4 10107 axgroth3 10784 ramcl 17000 cnsubrglem 21333 alexsubALTlem3 23936 i1fd 25582 dfon2lem6 35776 trer 36304 eleq2w2ALT 37035 modelaxreplem1 44968 elsetrecslem 49688 |
| Copyright terms: Public domain | W3C validator |