MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  spvv Structured version   Visualization version   GIF version

Theorem spvv 1988
Description: Specialization, using implicit substitution. Version of spv 2391 with a disjoint variable condition, which does not require ax-7 2008, ax-12 2178, ax-13 2370. (Contributed by NM, 30-Aug-1993.) (Revised by BJ, 31-May-2019.)
Hypothesis
Ref Expression
spvv.1 (𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
spvv (∀𝑥𝜑𝜓)
Distinct variable groups:   𝑥,𝑦   𝜓,𝑥
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑦)

Proof of Theorem spvv
StepHypRef Expression
1 spvv.1 . . 3 (𝑥 = 𝑦 → (𝜑𝜓))
21biimpd 229 . 2 (𝑥 = 𝑦 → (𝜑𝜓))
32spimvw 1986 1 (∀𝑥𝜑𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wal 1538
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967
This theorem depends on definitions:  df-bi 207  df-ex 1780
This theorem is referenced by:  chvarvv  1989  ru0  2128  nfcr  2881  ruOLD  3752  nalset  5268  dfpo2  6269  isowe2  7325  tfisi  7835  findcard2  9128  marypha1lem  9384  setind  9687  karden  9848  kmlem4  10107  axgroth3  10784  ramcl  17000  cnsubrglem  21333  alexsubALTlem3  23936  i1fd  25582  dfon2lem6  35776  trer  36304  eleq2w2ALT  37035  modelaxreplem1  44968  elsetrecslem  49688
  Copyright terms: Public domain W3C validator