MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  spvv Structured version   Visualization version   GIF version

Theorem spvv 1989
Description: Specialization, using implicit substitution. Version of spv 2393 with a disjoint variable condition, which does not require ax-7 2009, ax-12 2180, ax-13 2372. (Contributed by NM, 30-Aug-1993.) (Revised by BJ, 31-May-2019.)
Hypothesis
Ref Expression
spvv.1 (𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
spvv (∀𝑥𝜑𝜓)
Distinct variable groups:   𝑥,𝑦   𝜓,𝑥
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑦)

Proof of Theorem spvv
StepHypRef Expression
1 spvv.1 . . 3 (𝑥 = 𝑦 → (𝜑𝜓))
21biimpd 229 . 2 (𝑥 = 𝑦 → (𝜑𝜓))
32spimvw 1987 1 (∀𝑥𝜑𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wal 1539
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968
This theorem depends on definitions:  df-bi 207  df-ex 1781
This theorem is referenced by:  chvarvv  1990  ru0  2130  nfcr  2884  ruOLD  3740  nalset  5251  dfpo2  6243  isowe2  7284  tfisi  7789  findcard2  9074  marypha1lem  9317  elirrv  9483  setind  9637  karden  9788  kmlem4  10045  axgroth3  10722  ramcl  16941  cnsubrglem  21354  alexsubALTlem3  23965  i1fd  25610  r1omhfb  35121  setindregs  35126  r1omhfbregs  35131  dfon2lem6  35828  trer  36356  eleq2w2ALT  37087  modelaxreplem1  45017  elsetrecslem  49737
  Copyright terms: Public domain W3C validator