| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > spvv | Structured version Visualization version GIF version | ||
| Description: Specialization, using implicit substitution. Version of spv 2391 with a disjoint variable condition, which does not require ax-7 2008, ax-12 2178, ax-13 2370. (Contributed by NM, 30-Aug-1993.) (Revised by BJ, 31-May-2019.) |
| Ref | Expression |
|---|---|
| spvv.1 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| spvv | ⊢ (∀𝑥𝜑 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | spvv.1 | . . 3 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
| 2 | 1 | biimpd 229 | . 2 ⊢ (𝑥 = 𝑦 → (𝜑 → 𝜓)) |
| 3 | 2 | spimvw 1986 | 1 ⊢ (∀𝑥𝜑 → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∀wal 1538 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 |
| This theorem depends on definitions: df-bi 207 df-ex 1780 |
| This theorem is referenced by: chvarvv 1989 ru0 2128 nfcr 2881 ruOLD 3743 nalset 5255 dfpo2 6248 isowe2 7291 tfisi 7799 findcard2 9088 marypha1lem 9342 elirrv 9508 setind 9649 karden 9810 kmlem4 10067 axgroth3 10744 ramcl 16959 cnsubrglem 21341 alexsubALTlem3 23952 i1fd 25598 setindregs 35067 dfon2lem6 35764 trer 36292 eleq2w2ALT 37023 modelaxreplem1 44955 elsetrecslem 49688 |
| Copyright terms: Public domain | W3C validator |