![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > spvv | Structured version Visualization version GIF version |
Description: Specialization, using implicit substitution. Version of spv 2401 with a disjoint variable condition, which does not require ax-7 2007, ax-12 2178, ax-13 2380. (Contributed by NM, 30-Aug-1993.) (Revised by BJ, 31-May-2019.) |
Ref | Expression |
---|---|
spvv.1 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
spvv | ⊢ (∀𝑥𝜑 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | spvv.1 | . . 3 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
2 | 1 | biimpd 229 | . 2 ⊢ (𝑥 = 𝑦 → (𝜑 → 𝜓)) |
3 | 2 | spimvw 1995 | 1 ⊢ (∀𝑥𝜑 → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∀wal 1535 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 |
This theorem depends on definitions: df-bi 207 df-ex 1778 |
This theorem is referenced by: chvarvv 1998 ru0 2127 nfcr 2898 ruOLD 3803 nalset 5331 dfpo2 6327 isowe2 7386 tfisi 7896 findcard2 9230 marypha1lem 9502 setind 9803 karden 9964 kmlem4 10223 axgroth3 10900 ramcl 17076 cnsubrglem 21457 alexsubALTlem3 24078 i1fd 25735 dfon2lem6 35752 trer 36282 eleq2w2ALT 37013 elsetrecslem 48791 |
Copyright terms: Public domain | W3C validator |