| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > spvv | Structured version Visualization version GIF version | ||
| Description: Specialization, using implicit substitution. Version of spv 2393 with a disjoint variable condition, which does not require ax-7 2009, ax-12 2180, ax-13 2372. (Contributed by NM, 30-Aug-1993.) (Revised by BJ, 31-May-2019.) |
| Ref | Expression |
|---|---|
| spvv.1 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| spvv | ⊢ (∀𝑥𝜑 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | spvv.1 | . . 3 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
| 2 | 1 | biimpd 229 | . 2 ⊢ (𝑥 = 𝑦 → (𝜑 → 𝜓)) |
| 3 | 2 | spimvw 1987 | 1 ⊢ (∀𝑥𝜑 → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∀wal 1539 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 |
| This theorem depends on definitions: df-bi 207 df-ex 1781 |
| This theorem is referenced by: chvarvv 1990 ru0 2130 nfcr 2884 ruOLD 3740 nalset 5251 dfpo2 6243 isowe2 7284 tfisi 7789 findcard2 9074 marypha1lem 9317 elirrv 9483 setind 9637 karden 9788 kmlem4 10045 axgroth3 10722 ramcl 16941 cnsubrglem 21354 alexsubALTlem3 23965 i1fd 25610 r1omhfb 35121 setindregs 35126 r1omhfbregs 35131 dfon2lem6 35828 trer 36356 eleq2w2ALT 37087 modelaxreplem1 45017 elsetrecslem 49737 |
| Copyright terms: Public domain | W3C validator |