MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  spvv Structured version   Visualization version   GIF version

Theorem spvv 2007
Description: Specialization, using implicit substitution. Version of spv 2392 with a disjoint variable condition, which does not require ax-7 2019, ax-12 2178, ax-13 2371. (Contributed by NM, 30-Aug-1993.) (Revised by BJ, 31-May-2019.)
Hypothesis
Ref Expression
spvv.1 (𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
spvv (∀𝑥𝜑𝜓)
Distinct variable groups:   𝑥,𝑦   𝜓,𝑥
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑦)

Proof of Theorem spvv
StepHypRef Expression
1 spvv.1 . . 3 (𝑥 = 𝑦 → (𝜑𝜓))
21biimpd 232 . 2 (𝑥 = 𝑦 → (𝜑𝜓))
32spimvw 2006 1 (∀𝑥𝜑𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wal 1540
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1916  ax-6 1974
This theorem depends on definitions:  df-bi 210  df-ex 1787
This theorem is referenced by:  chvarvv  2009  nfcr  2884  ru  3678  nalset  5178  isowe2  7110  tfisi  7586  findcard2  8756  findcard2OLD  8827  marypha1lem  8963  setind  9242  karden  9390  kmlem4  9646  axgroth3  10324  ramcl  16458  alexsubALTlem3  22793  i1fd  24426  dfpo2  33286  dfon2lem6  33328  trer  34135  bj-ru0  34743  eleq2w2ALT  34832  elsetrecslem  45841
  Copyright terms: Public domain W3C validator