| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > spvv | Structured version Visualization version GIF version | ||
| Description: Specialization, using implicit substitution. Version of spv 2395 with a disjoint variable condition, which does not require ax-7 2009, ax-12 2182, ax-13 2374. (Contributed by NM, 30-Aug-1993.) (Revised by BJ, 31-May-2019.) |
| Ref | Expression |
|---|---|
| spvv.1 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| spvv | ⊢ (∀𝑥𝜑 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | spvv.1 | . . 3 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
| 2 | 1 | biimpd 229 | . 2 ⊢ (𝑥 = 𝑦 → (𝜑 → 𝜓)) |
| 3 | 2 | spimvw 1987 | 1 ⊢ (∀𝑥𝜑 → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∀wal 1539 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 |
| This theorem depends on definitions: df-bi 207 df-ex 1781 |
| This theorem is referenced by: chvarvv 1990 ru0 2132 nfcr 2885 ruOLD 3736 nalset 5253 dfpo2 6248 isowe2 7290 tfisi 7795 findcard2 9081 marypha1lem 9324 elirrv 9490 setind 9644 karden 9795 kmlem4 10052 axgroth3 10729 ramcl 16943 cnsubrglem 21355 alexsubALTlem3 23965 i1fd 25610 r1omhfb 35144 setindregs 35149 r1omhfbregs 35154 dfon2lem6 35851 trer 36381 eleq2w2ALT 37112 modelaxreplem1 45096 elsetrecslem 49825 |
| Copyright terms: Public domain | W3C validator |