| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > spvv | Structured version Visualization version GIF version | ||
| Description: Specialization, using implicit substitution. Version of spv 2392 with a disjoint variable condition, which does not require ax-7 2008, ax-12 2178, ax-13 2371. (Contributed by NM, 30-Aug-1993.) (Revised by BJ, 31-May-2019.) |
| Ref | Expression |
|---|---|
| spvv.1 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| spvv | ⊢ (∀𝑥𝜑 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | spvv.1 | . . 3 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
| 2 | 1 | biimpd 229 | . 2 ⊢ (𝑥 = 𝑦 → (𝜑 → 𝜓)) |
| 3 | 2 | spimvw 1986 | 1 ⊢ (∀𝑥𝜑 → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∀wal 1538 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 |
| This theorem depends on definitions: df-bi 207 df-ex 1780 |
| This theorem is referenced by: chvarvv 1989 ru0 2128 nfcr 2882 ruOLD 3755 nalset 5271 dfpo2 6272 isowe2 7328 tfisi 7838 findcard2 9134 marypha1lem 9391 setind 9694 karden 9855 kmlem4 10114 axgroth3 10791 ramcl 17007 cnsubrglem 21340 alexsubALTlem3 23943 i1fd 25589 dfon2lem6 35783 trer 36311 eleq2w2ALT 37042 modelaxreplem1 44975 elsetrecslem 49692 |
| Copyright terms: Public domain | W3C validator |