| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > spvv | Structured version Visualization version GIF version | ||
| Description: Specialization, using implicit substitution. Version of spv 2397 with a disjoint variable condition, which does not require ax-7 2007, ax-12 2177, ax-13 2376. (Contributed by NM, 30-Aug-1993.) (Revised by BJ, 31-May-2019.) |
| Ref | Expression |
|---|---|
| spvv.1 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| spvv | ⊢ (∀𝑥𝜑 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | spvv.1 | . . 3 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
| 2 | 1 | biimpd 229 | . 2 ⊢ (𝑥 = 𝑦 → (𝜑 → 𝜓)) |
| 3 | 2 | spimvw 1995 | 1 ⊢ (∀𝑥𝜑 → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∀wal 1538 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 |
| This theorem depends on definitions: df-bi 207 df-ex 1780 |
| This theorem is referenced by: chvarvv 1998 ru0 2127 nfcr 2888 ruOLD 3764 nalset 5283 dfpo2 6285 isowe2 7343 tfisi 7854 findcard2 9178 marypha1lem 9445 setind 9748 karden 9909 kmlem4 10168 axgroth3 10845 ramcl 17049 cnsubrglem 21384 alexsubALTlem3 23987 i1fd 25634 dfon2lem6 35806 trer 36334 eleq2w2ALT 37065 modelaxreplem1 45003 elsetrecslem 49563 |
| Copyright terms: Public domain | W3C validator |