Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > spvv | Structured version Visualization version GIF version |
Description: Specialization, using implicit substitution. Version of spv 2394 with a disjoint variable condition, which does not require ax-7 2014, ax-12 2174, ax-13 2373. (Contributed by NM, 30-Aug-1993.) (Revised by BJ, 31-May-2019.) |
Ref | Expression |
---|---|
spvv.1 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
spvv | ⊢ (∀𝑥𝜑 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | spvv.1 | . . 3 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
2 | 1 | biimpd 228 | . 2 ⊢ (𝑥 = 𝑦 → (𝜑 → 𝜓)) |
3 | 2 | spimvw 2002 | 1 ⊢ (∀𝑥𝜑 → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∀wal 1539 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 |
This theorem depends on definitions: df-bi 206 df-ex 1786 |
This theorem is referenced by: chvarvv 2005 nfcr 2893 ru 3718 nalset 5240 dfpo2 6196 isowe2 7214 tfisi 7693 findcard2 8912 findcard2OLD 9017 marypha1lem 9153 setind 9475 karden 9637 kmlem4 9893 axgroth3 10571 ramcl 16711 alexsubALTlem3 23181 i1fd 24826 dfon2lem6 33743 trer 34484 bj-ru0 35110 eleq2w2ALT 35199 elsetrecslem 46356 |
Copyright terms: Public domain | W3C validator |