Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > spvv | Structured version Visualization version GIF version |
Description: Specialization, using implicit substitution. Version of spv 2392 with a disjoint variable condition, which does not require ax-7 2019, ax-12 2178, ax-13 2371. (Contributed by NM, 30-Aug-1993.) (Revised by BJ, 31-May-2019.) |
Ref | Expression |
---|---|
spvv.1 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
spvv | ⊢ (∀𝑥𝜑 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | spvv.1 | . . 3 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
2 | 1 | biimpd 232 | . 2 ⊢ (𝑥 = 𝑦 → (𝜑 → 𝜓)) |
3 | 2 | spimvw 2006 | 1 ⊢ (∀𝑥𝜑 → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∀wal 1540 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1916 ax-6 1974 |
This theorem depends on definitions: df-bi 210 df-ex 1787 |
This theorem is referenced by: chvarvv 2009 nfcr 2884 ru 3678 nalset 5178 isowe2 7110 tfisi 7586 findcard2 8756 findcard2OLD 8827 marypha1lem 8963 setind 9242 karden 9390 kmlem4 9646 axgroth3 10324 ramcl 16458 alexsubALTlem3 22793 i1fd 24426 dfpo2 33286 dfon2lem6 33328 trer 34135 bj-ru0 34743 eleq2w2ALT 34832 elsetrecslem 45841 |
Copyright terms: Public domain | W3C validator |