MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  spvv Structured version   Visualization version   GIF version

Theorem spvv 1998
Description: Specialization, using implicit substitution. Version of spv 2391 with a disjoint variable condition, which does not require ax-7 2009, ax-12 2169, ax-13 2370. (Contributed by NM, 30-Aug-1993.) (Revised by BJ, 31-May-2019.)
Hypothesis
Ref Expression
spvv.1 (𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
spvv (∀𝑥𝜑𝜓)
Distinct variable groups:   𝑥,𝑦   𝜓,𝑥
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑦)

Proof of Theorem spvv
StepHypRef Expression
1 spvv.1 . . 3 (𝑥 = 𝑦 → (𝜑𝜓))
21biimpd 228 . 2 (𝑥 = 𝑦 → (𝜑𝜓))
32spimvw 1997 1 (∀𝑥𝜑𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wal 1537
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969
This theorem depends on definitions:  df-bi 206  df-ex 1780
This theorem is referenced by:  chvarvv  2000  nfcr  2890  ru  3720  nalset  5246  dfpo2  6214  isowe2  7253  tfisi  7737  findcard2  8985  findcard2OLD  9100  marypha1lem  9236  setind  9536  karden  9697  kmlem4  9955  axgroth3  10633  ramcl  16775  alexsubALTlem3  23245  i1fd  24890  dfon2lem6  33809  trer  34550  bj-ru0  35175  eleq2w2ALT  35264  elsetrecslem  46462
  Copyright terms: Public domain W3C validator