Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fldextrspundgdvds Structured version   Visualization version   GIF version

Theorem fldextrspundgdvds 33654
Description: Given two finite extensions 𝐼 / 𝐾 and 𝐽 / 𝐾 of the same field 𝐾, the degree of the extension 𝐼 / 𝐾 divides the degree of the extension 𝐸 / 𝐾, 𝐸 being the composite field 𝐼𝐽. (Contributed by Thierry Arnoux, 19-Oct-2025.)
Hypotheses
Ref Expression
fldextrspun.k 𝐾 = (𝐿s 𝐹)
fldextrspun.i 𝐼 = (𝐿s 𝐺)
fldextrspun.j 𝐽 = (𝐿s 𝐻)
fldextrspun.2 (𝜑𝐿 ∈ Field)
fldextrspun.3 (𝜑𝐹 ∈ (SubDRing‘𝐼))
fldextrspun.4 (𝜑𝐹 ∈ (SubDRing‘𝐽))
fldextrspun.5 (𝜑𝐺 ∈ (SubDRing‘𝐿))
fldextrspun.6 (𝜑𝐻 ∈ (SubDRing‘𝐿))
fldextrspundglemul.7 (𝜑 → (𝐽[:]𝐾) ∈ ℕ0)
fldextrspundglemul.1 𝐸 = (𝐿s (𝐿 fldGen (𝐺𝐻)))
fldextrspundgledvds.1 (𝜑 → (𝐼[:]𝐾) ∈ ℕ)
Assertion
Ref Expression
fldextrspundgdvds (𝜑 → (𝐼[:]𝐾) ∥ (𝐸[:]𝐾))

Proof of Theorem fldextrspundgdvds
StepHypRef Expression
1 fldextrspun.k . . . 4 𝐾 = (𝐿s 𝐹)
2 fldextrspun.i . . . 4 𝐼 = (𝐿s 𝐺)
3 fldextrspun.j . . . 4 𝐽 = (𝐿s 𝐻)
4 fldextrspun.2 . . . 4 (𝜑𝐿 ∈ Field)
5 fldextrspun.3 . . . 4 (𝜑𝐹 ∈ (SubDRing‘𝐼))
6 fldextrspun.4 . . . 4 (𝜑𝐹 ∈ (SubDRing‘𝐽))
7 fldextrspun.5 . . . 4 (𝜑𝐺 ∈ (SubDRing‘𝐿))
8 fldextrspun.6 . . . 4 (𝜑𝐻 ∈ (SubDRing‘𝐿))
9 fldextrspundglemul.7 . . . 4 (𝜑 → (𝐽[:]𝐾) ∈ ℕ0)
10 fldextrspundglemul.1 . . . 4 𝐸 = (𝐿s (𝐿 fldGen (𝐺𝐻)))
11 fldextrspundgledvds.1 . . . 4 (𝜑 → (𝐼[:]𝐾) ∈ ℕ)
121, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11fldextrspundgdvdslem 33653 . . 3 (𝜑 → (𝐸[:]𝐼) ∈ ℕ0)
1312nn0zd 12497 . 2 (𝜑 → (𝐸[:]𝐼) ∈ ℤ)
1411nnzd 12498 . 2 (𝜑 → (𝐼[:]𝐾) ∈ ℤ)
15 eqid 2729 . . . . . . 7 (Base‘𝐿) = (Base‘𝐿)
164flddrngd 20626 . . . . . . 7 (𝜑𝐿 ∈ DivRing)
1715sdrgss 20678 . . . . . . . . 9 (𝐺 ∈ (SubDRing‘𝐿) → 𝐺 ⊆ (Base‘𝐿))
187, 17syl 17 . . . . . . . 8 (𝜑𝐺 ⊆ (Base‘𝐿))
1915sdrgss 20678 . . . . . . . . 9 (𝐻 ∈ (SubDRing‘𝐿) → 𝐻 ⊆ (Base‘𝐿))
208, 19syl 17 . . . . . . . 8 (𝜑𝐻 ⊆ (Base‘𝐿))
2118, 20unssd 4143 . . . . . . 7 (𝜑 → (𝐺𝐻) ⊆ (Base‘𝐿))
2215, 16, 21fldgensdrg 33254 . . . . . 6 (𝜑 → (𝐿 fldGen (𝐺𝐻)) ∈ (SubDRing‘𝐿))
23 eqid 2729 . . . . . . . . . . . 12 (RingSpan‘𝐿) = (RingSpan‘𝐿)
24 eqid 2729 . . . . . . . . . . . 12 ((RingSpan‘𝐿)‘(𝐺𝐻)) = ((RingSpan‘𝐿)‘(𝐺𝐻))
25 eqid 2729 . . . . . . . . . . . 12 (𝐿s ((RingSpan‘𝐿)‘(𝐺𝐻))) = (𝐿s ((RingSpan‘𝐿)‘(𝐺𝐻)))
261, 2, 3, 4, 5, 6, 7, 8, 9, 23, 24, 25fldextrspunlem2 33650 . . . . . . . . . . 11 (𝜑 → ((RingSpan‘𝐿)‘(𝐺𝐻)) = (𝐿 fldGen (𝐺𝐻)))
2726oveq2d 7365 . . . . . . . . . 10 (𝜑 → (𝐿s ((RingSpan‘𝐿)‘(𝐺𝐻))) = (𝐿s (𝐿 fldGen (𝐺𝐻))))
2810, 27eqtr4id 2783 . . . . . . . . 9 (𝜑𝐸 = (𝐿s ((RingSpan‘𝐿)‘(𝐺𝐻))))
291, 2, 3, 4, 5, 6, 7, 8, 9, 23, 24, 25fldextrspunfld 33649 . . . . . . . . 9 (𝜑 → (𝐿s ((RingSpan‘𝐿)‘(𝐺𝐻))) ∈ Field)
3028, 29eqeltrd 2828 . . . . . . . 8 (𝜑𝐸 ∈ Field)
3130flddrngd 20626 . . . . . . 7 (𝜑𝐸 ∈ DivRing)
3231drngringd 20622 . . . . . . . 8 (𝜑𝐸 ∈ Ring)
3310oveq1i 7359 . . . . . . . . . . . 12 (𝐸s 𝐹) = ((𝐿s (𝐿 fldGen (𝐺𝐻))) ↾s 𝐹)
34 ovexd 7384 . . . . . . . . . . . . 13 (𝜑 → (𝐿 fldGen (𝐺𝐻)) ∈ V)
35 eqid 2729 . . . . . . . . . . . . . . . . . 18 (Base‘𝐼) = (Base‘𝐼)
3635sdrgss 20678 . . . . . . . . . . . . . . . . 17 (𝐹 ∈ (SubDRing‘𝐼) → 𝐹 ⊆ (Base‘𝐼))
375, 36syl 17 . . . . . . . . . . . . . . . 16 (𝜑𝐹 ⊆ (Base‘𝐼))
382, 15ressbas2 17149 . . . . . . . . . . . . . . . . 17 (𝐺 ⊆ (Base‘𝐿) → 𝐺 = (Base‘𝐼))
3918, 38syl 17 . . . . . . . . . . . . . . . 16 (𝜑𝐺 = (Base‘𝐼))
4037, 39sseqtrrd 3973 . . . . . . . . . . . . . . 15 (𝜑𝐹𝐺)
41 ssun1 4129 . . . . . . . . . . . . . . . 16 𝐺 ⊆ (𝐺𝐻)
4241a1i 11 . . . . . . . . . . . . . . 15 (𝜑𝐺 ⊆ (𝐺𝐻))
4340, 42sstrd 3946 . . . . . . . . . . . . . 14 (𝜑𝐹 ⊆ (𝐺𝐻))
4415, 16, 21fldgenssid 33253 . . . . . . . . . . . . . 14 (𝜑 → (𝐺𝐻) ⊆ (𝐿 fldGen (𝐺𝐻)))
4543, 44sstrd 3946 . . . . . . . . . . . . 13 (𝜑𝐹 ⊆ (𝐿 fldGen (𝐺𝐻)))
46 ressabs 17159 . . . . . . . . . . . . 13 (((𝐿 fldGen (𝐺𝐻)) ∈ V ∧ 𝐹 ⊆ (𝐿 fldGen (𝐺𝐻))) → ((𝐿s (𝐿 fldGen (𝐺𝐻))) ↾s 𝐹) = (𝐿s 𝐹))
4734, 45, 46syl2anc 584 . . . . . . . . . . . 12 (𝜑 → ((𝐿s (𝐿 fldGen (𝐺𝐻))) ↾s 𝐹) = (𝐿s 𝐹))
4833, 47eqtrid 2776 . . . . . . . . . . 11 (𝜑 → (𝐸s 𝐹) = (𝐿s 𝐹))
492oveq1i 7359 . . . . . . . . . . . 12 (𝐼s 𝐹) = ((𝐿s 𝐺) ↾s 𝐹)
50 ressabs 17159 . . . . . . . . . . . . 13 ((𝐺 ∈ (SubDRing‘𝐿) ∧ 𝐹𝐺) → ((𝐿s 𝐺) ↾s 𝐹) = (𝐿s 𝐹))
517, 40, 50syl2anc 584 . . . . . . . . . . . 12 (𝜑 → ((𝐿s 𝐺) ↾s 𝐹) = (𝐿s 𝐹))
5249, 51eqtrid 2776 . . . . . . . . . . 11 (𝜑 → (𝐼s 𝐹) = (𝐿s 𝐹))
5348, 52eqtr4d 2767 . . . . . . . . . 10 (𝜑 → (𝐸s 𝐹) = (𝐼s 𝐹))
54 eqid 2729 . . . . . . . . . . . 12 (𝐼s 𝐹) = (𝐼s 𝐹)
5554sdrgdrng 20675 . . . . . . . . . . 11 (𝐹 ∈ (SubDRing‘𝐼) → (𝐼s 𝐹) ∈ DivRing)
565, 55syl 17 . . . . . . . . . 10 (𝜑 → (𝐼s 𝐹) ∈ DivRing)
5753, 56eqeltrd 2828 . . . . . . . . 9 (𝜑 → (𝐸s 𝐹) ∈ DivRing)
5857drngringd 20622 . . . . . . . 8 (𝜑 → (𝐸s 𝐹) ∈ Ring)
5915, 16, 21fldgenssv 33255 . . . . . . . . . 10 (𝜑 → (𝐿 fldGen (𝐺𝐻)) ⊆ (Base‘𝐿))
6010, 15ressbas2 17149 . . . . . . . . . 10 ((𝐿 fldGen (𝐺𝐻)) ⊆ (Base‘𝐿) → (𝐿 fldGen (𝐺𝐻)) = (Base‘𝐸))
6159, 60syl 17 . . . . . . . . 9 (𝜑 → (𝐿 fldGen (𝐺𝐻)) = (Base‘𝐸))
6245, 61sseqtrd 3972 . . . . . . . 8 (𝜑𝐹 ⊆ (Base‘𝐸))
6316drngringd 20622 . . . . . . . . . . 11 (𝜑𝐿 ∈ Ring)
6442, 44sstrd 3946 . . . . . . . . . . . 12 (𝜑𝐺 ⊆ (𝐿 fldGen (𝐺𝐻)))
65 sdrgsubrg 20676 . . . . . . . . . . . . 13 (𝐺 ∈ (SubDRing‘𝐿) → 𝐺 ∈ (SubRing‘𝐿))
66 eqid 2729 . . . . . . . . . . . . . 14 (1r𝐿) = (1r𝐿)
6766subrg1cl 20465 . . . . . . . . . . . . 13 (𝐺 ∈ (SubRing‘𝐿) → (1r𝐿) ∈ 𝐺)
687, 65, 673syl 18 . . . . . . . . . . . 12 (𝜑 → (1r𝐿) ∈ 𝐺)
6964, 68sseldd 3936 . . . . . . . . . . 11 (𝜑 → (1r𝐿) ∈ (𝐿 fldGen (𝐺𝐻)))
7010, 15, 66ress1r 33175 . . . . . . . . . . 11 ((𝐿 ∈ Ring ∧ (1r𝐿) ∈ (𝐿 fldGen (𝐺𝐻)) ∧ (𝐿 fldGen (𝐺𝐻)) ⊆ (Base‘𝐿)) → (1r𝐿) = (1r𝐸))
7163, 69, 59, 70syl3anc 1373 . . . . . . . . . 10 (𝜑 → (1r𝐿) = (1r𝐸))
722, 15, 66ress1r 33175 . . . . . . . . . . 11 ((𝐿 ∈ Ring ∧ (1r𝐿) ∈ 𝐺𝐺 ⊆ (Base‘𝐿)) → (1r𝐿) = (1r𝐼))
7363, 68, 18, 72syl3anc 1373 . . . . . . . . . 10 (𝜑 → (1r𝐿) = (1r𝐼))
7471, 73eqtr3d 2766 . . . . . . . . 9 (𝜑 → (1r𝐸) = (1r𝐼))
75 sdrgsubrg 20676 . . . . . . . . . 10 (𝐹 ∈ (SubDRing‘𝐼) → 𝐹 ∈ (SubRing‘𝐼))
76 eqid 2729 . . . . . . . . . . 11 (1r𝐼) = (1r𝐼)
7776subrg1cl 20465 . . . . . . . . . 10 (𝐹 ∈ (SubRing‘𝐼) → (1r𝐼) ∈ 𝐹)
785, 75, 773syl 18 . . . . . . . . 9 (𝜑 → (1r𝐼) ∈ 𝐹)
7974, 78eqeltrd 2828 . . . . . . . 8 (𝜑 → (1r𝐸) ∈ 𝐹)
80 eqid 2729 . . . . . . . . 9 (Base‘𝐸) = (Base‘𝐸)
81 eqid 2729 . . . . . . . . 9 (1r𝐸) = (1r𝐸)
8280, 81issubrg 20456 . . . . . . . 8 (𝐹 ∈ (SubRing‘𝐸) ↔ ((𝐸 ∈ Ring ∧ (𝐸s 𝐹) ∈ Ring) ∧ (𝐹 ⊆ (Base‘𝐸) ∧ (1r𝐸) ∈ 𝐹)))
8332, 58, 62, 79, 82syl22anbrc 32399 . . . . . . 7 (𝜑𝐹 ∈ (SubRing‘𝐸))
84 issdrg 20673 . . . . . . 7 (𝐹 ∈ (SubDRing‘𝐸) ↔ (𝐸 ∈ DivRing ∧ 𝐹 ∈ (SubRing‘𝐸) ∧ (𝐸s 𝐹) ∈ DivRing))
8531, 83, 57, 84syl3anbrc 1344 . . . . . 6 (𝜑𝐹 ∈ (SubDRing‘𝐸))
8610, 4, 22, 85, 1fldsdrgfldext2 33635 . . . . 5 (𝜑𝐸/FldExt𝐾)
87 extdgcl 33629 . . . . 5 (𝐸/FldExt𝐾 → (𝐸[:]𝐾) ∈ ℕ0*)
8886, 87syl 17 . . . 4 (𝜑 → (𝐸[:]𝐾) ∈ ℕ0*)
8911nnnn0d 12445 . . . . 5 (𝜑 → (𝐼[:]𝐾) ∈ ℕ0)
9089, 9nn0mulcld 12450 . . . 4 (𝜑 → ((𝐼[:]𝐾) · (𝐽[:]𝐾)) ∈ ℕ0)
911, 2, 3, 4, 5, 6, 7, 8, 9, 10fldextrspundglemul 33652 . . . . 5 (𝜑 → (𝐸[:]𝐾) ≤ ((𝐼[:]𝐾) ·e (𝐽[:]𝐾)))
9211nnred 12143 . . . . . 6 (𝜑 → (𝐼[:]𝐾) ∈ ℝ)
939nn0red 12446 . . . . . 6 (𝜑 → (𝐽[:]𝐾) ∈ ℝ)
94 rexmul 13173 . . . . . 6 (((𝐼[:]𝐾) ∈ ℝ ∧ (𝐽[:]𝐾) ∈ ℝ) → ((𝐼[:]𝐾) ·e (𝐽[:]𝐾)) = ((𝐼[:]𝐾) · (𝐽[:]𝐾)))
9592, 93, 94syl2anc 584 . . . . 5 (𝜑 → ((𝐼[:]𝐾) ·e (𝐽[:]𝐾)) = ((𝐼[:]𝐾) · (𝐽[:]𝐾)))
9691, 95breqtrd 5118 . . . 4 (𝜑 → (𝐸[:]𝐾) ≤ ((𝐼[:]𝐾) · (𝐽[:]𝐾)))
97 xnn0lenn0nn0 13147 . . . 4 (((𝐸[:]𝐾) ∈ ℕ0* ∧ ((𝐼[:]𝐾) · (𝐽[:]𝐾)) ∈ ℕ0 ∧ (𝐸[:]𝐾) ≤ ((𝐼[:]𝐾) · (𝐽[:]𝐾))) → (𝐸[:]𝐾) ∈ ℕ0)
9888, 90, 96, 97syl3anc 1373 . . 3 (𝜑 → (𝐸[:]𝐾) ∈ ℕ0)
9998nn0zd 12497 . 2 (𝜑 → (𝐸[:]𝐾) ∈ ℤ)
10015, 2, 10, 4, 7, 20fldgenfldext 33641 . . . 4 (𝜑𝐸/FldExt𝐼)
1012, 4, 7, 5, 1fldsdrgfldext2 33635 . . . 4 (𝜑𝐼/FldExt𝐾)
102 extdgmul 33636 . . . 4 ((𝐸/FldExt𝐼𝐼/FldExt𝐾) → (𝐸[:]𝐾) = ((𝐸[:]𝐼) ·e (𝐼[:]𝐾)))
103100, 101, 102syl2anc 584 . . 3 (𝜑 → (𝐸[:]𝐾) = ((𝐸[:]𝐼) ·e (𝐼[:]𝐾)))
10412nn0red 12446 . . . 4 (𝜑 → (𝐸[:]𝐼) ∈ ℝ)
105 rexmul 13173 . . . 4 (((𝐸[:]𝐼) ∈ ℝ ∧ (𝐼[:]𝐾) ∈ ℝ) → ((𝐸[:]𝐼) ·e (𝐼[:]𝐾)) = ((𝐸[:]𝐼) · (𝐼[:]𝐾)))
106104, 92, 105syl2anc 584 . . 3 (𝜑 → ((𝐸[:]𝐼) ·e (𝐼[:]𝐾)) = ((𝐸[:]𝐼) · (𝐼[:]𝐾)))
107103, 106eqtr2d 2765 . 2 (𝜑 → ((𝐸[:]𝐼) · (𝐼[:]𝐾)) = (𝐸[:]𝐾))
108 dvds0lem 16177 . 2 ((((𝐸[:]𝐼) ∈ ℤ ∧ (𝐼[:]𝐾) ∈ ℤ ∧ (𝐸[:]𝐾) ∈ ℤ) ∧ ((𝐸[:]𝐼) · (𝐼[:]𝐾)) = (𝐸[:]𝐾)) → (𝐼[:]𝐾) ∥ (𝐸[:]𝐾))
10913, 14, 99, 107, 108syl31anc 1375 1 (𝜑 → (𝐼[:]𝐾) ∥ (𝐸[:]𝐾))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  Vcvv 3436  cun 3901  wss 3903   class class class wbr 5092  cfv 6482  (class class class)co 7349  cr 11008   · cmul 11014  cle 11150  cn 12128  0cn0 12384  0*cxnn0 12457  cz 12471   ·e cxmu 13013  cdvds 16163  Basecbs 17120  s cress 17141  1rcur 20066  Ringcrg 20118  SubRingcsubrg 20454  RingSpancrgspn 20495  DivRingcdr 20614  Fieldcfield 20615  SubDRingcsdrg 20671   fldGen cfldgen 33250  /FldExtcfldext 33611  [:]cextdg 33613
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-reg 9484  ax-inf2 9537  ax-ac2 10357  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087  ax-addf 11088
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-iin 4944  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-isom 6491  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-of 7613  df-rpss 7659  df-om 7800  df-1st 7924  df-2nd 7925  df-supp 8094  df-tpos 8159  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-2o 8389  df-oadd 8392  df-er 8625  df-map 8755  df-ixp 8825  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-fsupp 9252  df-sup 9332  df-inf 9333  df-oi 9402  df-r1 9660  df-rank 9661  df-dju 9797  df-card 9835  df-acn 9838  df-ac 10010  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-2 12191  df-3 12192  df-4 12193  df-5 12194  df-6 12195  df-7 12196  df-8 12197  df-9 12198  df-n0 12385  df-xnn0 12458  df-z 12472  df-dec 12592  df-uz 12736  df-rp 12894  df-xneg 13014  df-xadd 13015  df-xmul 13016  df-icc 13255  df-fz 13411  df-fzo 13558  df-seq 13909  df-exp 13969  df-hash 14238  df-word 14421  df-lsw 14470  df-concat 14478  df-s1 14503  df-substr 14548  df-pfx 14578  df-s2 14755  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-clim 15395  df-sum 15594  df-dvds 16164  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-starv 17176  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ocomp 17182  df-ds 17183  df-unif 17184  df-hom 17185  df-cco 17186  df-0g 17345  df-gsum 17346  df-prds 17351  df-pws 17353  df-mre 17488  df-mrc 17489  df-mri 17490  df-acs 17491  df-proset 18200  df-drs 18201  df-poset 18219  df-ipo 18434  df-mgm 18514  df-sgrp 18593  df-mnd 18609  df-mhm 18657  df-submnd 18658  df-grp 18815  df-minusg 18816  df-sbg 18817  df-mulg 18947  df-subg 19002  df-ghm 19092  df-cntz 19196  df-cntr 19197  df-lsm 19515  df-cmn 19661  df-abl 19662  df-mgp 20026  df-rng 20038  df-ur 20067  df-ring 20120  df-cring 20121  df-oppr 20222  df-dvdsr 20242  df-unit 20243  df-invr 20273  df-dvr 20286  df-nzr 20398  df-subrng 20431  df-subrg 20455  df-rgspn 20496  df-rlreg 20579  df-domn 20580  df-idom 20581  df-drng 20616  df-field 20617  df-sdrg 20672  df-lmod 20765  df-lss 20835  df-lsp 20875  df-lmhm 20926  df-lmim 20927  df-lbs 20979  df-lvec 21007  df-sra 21077  df-rgmod 21078  df-cnfld 21262  df-zring 21354  df-dsmm 21639  df-frlm 21654  df-uvc 21690  df-lindf 21713  df-linds 21714  df-assa 21760  df-ind 32795  df-fldgen 33251  df-dim 33572  df-fldext 33614  df-extdg 33615
This theorem is referenced by:  fldext2rspun  33655
  Copyright terms: Public domain W3C validator