Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fldextrspundgdvds Structured version   Visualization version   GIF version

Theorem fldextrspundgdvds 33669
Description: Given two finite extensions 𝐼 / 𝐾 and 𝐽 / 𝐾 of the same field 𝐾, the degree of the extension 𝐼 / 𝐾 divides the degree of the extension 𝐸 / 𝐾, 𝐸 being the composite field 𝐼𝐽. (Contributed by Thierry Arnoux, 19-Oct-2025.)
Hypotheses
Ref Expression
fldextrspun.k 𝐾 = (𝐿s 𝐹)
fldextrspun.i 𝐼 = (𝐿s 𝐺)
fldextrspun.j 𝐽 = (𝐿s 𝐻)
fldextrspun.2 (𝜑𝐿 ∈ Field)
fldextrspun.3 (𝜑𝐹 ∈ (SubDRing‘𝐼))
fldextrspun.4 (𝜑𝐹 ∈ (SubDRing‘𝐽))
fldextrspun.5 (𝜑𝐺 ∈ (SubDRing‘𝐿))
fldextrspun.6 (𝜑𝐻 ∈ (SubDRing‘𝐿))
fldextrspundglemul.7 (𝜑 → (𝐽[:]𝐾) ∈ ℕ0)
fldextrspundglemul.1 𝐸 = (𝐿s (𝐿 fldGen (𝐺𝐻)))
fldextrspundgledvds.1 (𝜑 → (𝐼[:]𝐾) ∈ ℕ)
Assertion
Ref Expression
fldextrspundgdvds (𝜑 → (𝐼[:]𝐾) ∥ (𝐸[:]𝐾))

Proof of Theorem fldextrspundgdvds
StepHypRef Expression
1 fldextrspun.k . . . 4 𝐾 = (𝐿s 𝐹)
2 fldextrspun.i . . . 4 𝐼 = (𝐿s 𝐺)
3 fldextrspun.j . . . 4 𝐽 = (𝐿s 𝐻)
4 fldextrspun.2 . . . 4 (𝜑𝐿 ∈ Field)
5 fldextrspun.3 . . . 4 (𝜑𝐹 ∈ (SubDRing‘𝐼))
6 fldextrspun.4 . . . 4 (𝜑𝐹 ∈ (SubDRing‘𝐽))
7 fldextrspun.5 . . . 4 (𝜑𝐺 ∈ (SubDRing‘𝐿))
8 fldextrspun.6 . . . 4 (𝜑𝐻 ∈ (SubDRing‘𝐿))
9 fldextrspundglemul.7 . . . 4 (𝜑 → (𝐽[:]𝐾) ∈ ℕ0)
10 fldextrspundglemul.1 . . . 4 𝐸 = (𝐿s (𝐿 fldGen (𝐺𝐻)))
11 fldextrspundgledvds.1 . . . 4 (𝜑 → (𝐼[:]𝐾) ∈ ℕ)
121, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11fldextrspundgdvdslem 33668 . . 3 (𝜑 → (𝐸[:]𝐼) ∈ ℕ0)
1312nn0zd 12531 . 2 (𝜑 → (𝐸[:]𝐼) ∈ ℤ)
1411nnzd 12532 . 2 (𝜑 → (𝐼[:]𝐾) ∈ ℤ)
15 eqid 2729 . . . . . . 7 (Base‘𝐿) = (Base‘𝐿)
164flddrngd 20661 . . . . . . 7 (𝜑𝐿 ∈ DivRing)
1715sdrgss 20713 . . . . . . . . 9 (𝐺 ∈ (SubDRing‘𝐿) → 𝐺 ⊆ (Base‘𝐿))
187, 17syl 17 . . . . . . . 8 (𝜑𝐺 ⊆ (Base‘𝐿))
1915sdrgss 20713 . . . . . . . . 9 (𝐻 ∈ (SubDRing‘𝐿) → 𝐻 ⊆ (Base‘𝐿))
208, 19syl 17 . . . . . . . 8 (𝜑𝐻 ⊆ (Base‘𝐿))
2118, 20unssd 4151 . . . . . . 7 (𝜑 → (𝐺𝐻) ⊆ (Base‘𝐿))
2215, 16, 21fldgensdrg 33280 . . . . . 6 (𝜑 → (𝐿 fldGen (𝐺𝐻)) ∈ (SubDRing‘𝐿))
23 eqid 2729 . . . . . . . . . . . 12 (RingSpan‘𝐿) = (RingSpan‘𝐿)
24 eqid 2729 . . . . . . . . . . . 12 ((RingSpan‘𝐿)‘(𝐺𝐻)) = ((RingSpan‘𝐿)‘(𝐺𝐻))
25 eqid 2729 . . . . . . . . . . . 12 (𝐿s ((RingSpan‘𝐿)‘(𝐺𝐻))) = (𝐿s ((RingSpan‘𝐿)‘(𝐺𝐻)))
261, 2, 3, 4, 5, 6, 7, 8, 9, 23, 24, 25fldextrspunlem2 33665 . . . . . . . . . . 11 (𝜑 → ((RingSpan‘𝐿)‘(𝐺𝐻)) = (𝐿 fldGen (𝐺𝐻)))
2726oveq2d 7385 . . . . . . . . . 10 (𝜑 → (𝐿s ((RingSpan‘𝐿)‘(𝐺𝐻))) = (𝐿s (𝐿 fldGen (𝐺𝐻))))
2810, 27eqtr4id 2783 . . . . . . . . 9 (𝜑𝐸 = (𝐿s ((RingSpan‘𝐿)‘(𝐺𝐻))))
291, 2, 3, 4, 5, 6, 7, 8, 9, 23, 24, 25fldextrspunfld 33664 . . . . . . . . 9 (𝜑 → (𝐿s ((RingSpan‘𝐿)‘(𝐺𝐻))) ∈ Field)
3028, 29eqeltrd 2828 . . . . . . . 8 (𝜑𝐸 ∈ Field)
3130flddrngd 20661 . . . . . . 7 (𝜑𝐸 ∈ DivRing)
3231drngringd 20657 . . . . . . . 8 (𝜑𝐸 ∈ Ring)
3310oveq1i 7379 . . . . . . . . . . . 12 (𝐸s 𝐹) = ((𝐿s (𝐿 fldGen (𝐺𝐻))) ↾s 𝐹)
34 ovexd 7404 . . . . . . . . . . . . 13 (𝜑 → (𝐿 fldGen (𝐺𝐻)) ∈ V)
35 eqid 2729 . . . . . . . . . . . . . . . . . 18 (Base‘𝐼) = (Base‘𝐼)
3635sdrgss 20713 . . . . . . . . . . . . . . . . 17 (𝐹 ∈ (SubDRing‘𝐼) → 𝐹 ⊆ (Base‘𝐼))
375, 36syl 17 . . . . . . . . . . . . . . . 16 (𝜑𝐹 ⊆ (Base‘𝐼))
382, 15ressbas2 17184 . . . . . . . . . . . . . . . . 17 (𝐺 ⊆ (Base‘𝐿) → 𝐺 = (Base‘𝐼))
3918, 38syl 17 . . . . . . . . . . . . . . . 16 (𝜑𝐺 = (Base‘𝐼))
4037, 39sseqtrrd 3981 . . . . . . . . . . . . . . 15 (𝜑𝐹𝐺)
41 ssun1 4137 . . . . . . . . . . . . . . . 16 𝐺 ⊆ (𝐺𝐻)
4241a1i 11 . . . . . . . . . . . . . . 15 (𝜑𝐺 ⊆ (𝐺𝐻))
4340, 42sstrd 3954 . . . . . . . . . . . . . 14 (𝜑𝐹 ⊆ (𝐺𝐻))
4415, 16, 21fldgenssid 33279 . . . . . . . . . . . . . 14 (𝜑 → (𝐺𝐻) ⊆ (𝐿 fldGen (𝐺𝐻)))
4543, 44sstrd 3954 . . . . . . . . . . . . 13 (𝜑𝐹 ⊆ (𝐿 fldGen (𝐺𝐻)))
46 ressabs 17194 . . . . . . . . . . . . 13 (((𝐿 fldGen (𝐺𝐻)) ∈ V ∧ 𝐹 ⊆ (𝐿 fldGen (𝐺𝐻))) → ((𝐿s (𝐿 fldGen (𝐺𝐻))) ↾s 𝐹) = (𝐿s 𝐹))
4734, 45, 46syl2anc 584 . . . . . . . . . . . 12 (𝜑 → ((𝐿s (𝐿 fldGen (𝐺𝐻))) ↾s 𝐹) = (𝐿s 𝐹))
4833, 47eqtrid 2776 . . . . . . . . . . 11 (𝜑 → (𝐸s 𝐹) = (𝐿s 𝐹))
492oveq1i 7379 . . . . . . . . . . . 12 (𝐼s 𝐹) = ((𝐿s 𝐺) ↾s 𝐹)
50 ressabs 17194 . . . . . . . . . . . . 13 ((𝐺 ∈ (SubDRing‘𝐿) ∧ 𝐹𝐺) → ((𝐿s 𝐺) ↾s 𝐹) = (𝐿s 𝐹))
517, 40, 50syl2anc 584 . . . . . . . . . . . 12 (𝜑 → ((𝐿s 𝐺) ↾s 𝐹) = (𝐿s 𝐹))
5249, 51eqtrid 2776 . . . . . . . . . . 11 (𝜑 → (𝐼s 𝐹) = (𝐿s 𝐹))
5348, 52eqtr4d 2767 . . . . . . . . . 10 (𝜑 → (𝐸s 𝐹) = (𝐼s 𝐹))
54 eqid 2729 . . . . . . . . . . . 12 (𝐼s 𝐹) = (𝐼s 𝐹)
5554sdrgdrng 20710 . . . . . . . . . . 11 (𝐹 ∈ (SubDRing‘𝐼) → (𝐼s 𝐹) ∈ DivRing)
565, 55syl 17 . . . . . . . . . 10 (𝜑 → (𝐼s 𝐹) ∈ DivRing)
5753, 56eqeltrd 2828 . . . . . . . . 9 (𝜑 → (𝐸s 𝐹) ∈ DivRing)
5857drngringd 20657 . . . . . . . 8 (𝜑 → (𝐸s 𝐹) ∈ Ring)
5915, 16, 21fldgenssv 33281 . . . . . . . . . 10 (𝜑 → (𝐿 fldGen (𝐺𝐻)) ⊆ (Base‘𝐿))
6010, 15ressbas2 17184 . . . . . . . . . 10 ((𝐿 fldGen (𝐺𝐻)) ⊆ (Base‘𝐿) → (𝐿 fldGen (𝐺𝐻)) = (Base‘𝐸))
6159, 60syl 17 . . . . . . . . 9 (𝜑 → (𝐿 fldGen (𝐺𝐻)) = (Base‘𝐸))
6245, 61sseqtrd 3980 . . . . . . . 8 (𝜑𝐹 ⊆ (Base‘𝐸))
6316drngringd 20657 . . . . . . . . . . 11 (𝜑𝐿 ∈ Ring)
6442, 44sstrd 3954 . . . . . . . . . . . 12 (𝜑𝐺 ⊆ (𝐿 fldGen (𝐺𝐻)))
65 sdrgsubrg 20711 . . . . . . . . . . . . 13 (𝐺 ∈ (SubDRing‘𝐿) → 𝐺 ∈ (SubRing‘𝐿))
66 eqid 2729 . . . . . . . . . . . . . 14 (1r𝐿) = (1r𝐿)
6766subrg1cl 20500 . . . . . . . . . . . . 13 (𝐺 ∈ (SubRing‘𝐿) → (1r𝐿) ∈ 𝐺)
687, 65, 673syl 18 . . . . . . . . . . . 12 (𝜑 → (1r𝐿) ∈ 𝐺)
6964, 68sseldd 3944 . . . . . . . . . . 11 (𝜑 → (1r𝐿) ∈ (𝐿 fldGen (𝐺𝐻)))
7010, 15, 66ress1r 33201 . . . . . . . . . . 11 ((𝐿 ∈ Ring ∧ (1r𝐿) ∈ (𝐿 fldGen (𝐺𝐻)) ∧ (𝐿 fldGen (𝐺𝐻)) ⊆ (Base‘𝐿)) → (1r𝐿) = (1r𝐸))
7163, 69, 59, 70syl3anc 1373 . . . . . . . . . 10 (𝜑 → (1r𝐿) = (1r𝐸))
722, 15, 66ress1r 33201 . . . . . . . . . . 11 ((𝐿 ∈ Ring ∧ (1r𝐿) ∈ 𝐺𝐺 ⊆ (Base‘𝐿)) → (1r𝐿) = (1r𝐼))
7363, 68, 18, 72syl3anc 1373 . . . . . . . . . 10 (𝜑 → (1r𝐿) = (1r𝐼))
7471, 73eqtr3d 2766 . . . . . . . . 9 (𝜑 → (1r𝐸) = (1r𝐼))
75 sdrgsubrg 20711 . . . . . . . . . 10 (𝐹 ∈ (SubDRing‘𝐼) → 𝐹 ∈ (SubRing‘𝐼))
76 eqid 2729 . . . . . . . . . . 11 (1r𝐼) = (1r𝐼)
7776subrg1cl 20500 . . . . . . . . . 10 (𝐹 ∈ (SubRing‘𝐼) → (1r𝐼) ∈ 𝐹)
785, 75, 773syl 18 . . . . . . . . 9 (𝜑 → (1r𝐼) ∈ 𝐹)
7974, 78eqeltrd 2828 . . . . . . . 8 (𝜑 → (1r𝐸) ∈ 𝐹)
80 eqid 2729 . . . . . . . . 9 (Base‘𝐸) = (Base‘𝐸)
81 eqid 2729 . . . . . . . . 9 (1r𝐸) = (1r𝐸)
8280, 81issubrg 20491 . . . . . . . 8 (𝐹 ∈ (SubRing‘𝐸) ↔ ((𝐸 ∈ Ring ∧ (𝐸s 𝐹) ∈ Ring) ∧ (𝐹 ⊆ (Base‘𝐸) ∧ (1r𝐸) ∈ 𝐹)))
8332, 58, 62, 79, 82syl22anbrc 32434 . . . . . . 7 (𝜑𝐹 ∈ (SubRing‘𝐸))
84 issdrg 20708 . . . . . . 7 (𝐹 ∈ (SubDRing‘𝐸) ↔ (𝐸 ∈ DivRing ∧ 𝐹 ∈ (SubRing‘𝐸) ∧ (𝐸s 𝐹) ∈ DivRing))
8531, 83, 57, 84syl3anbrc 1344 . . . . . 6 (𝜑𝐹 ∈ (SubDRing‘𝐸))
8610, 4, 22, 85, 1fldsdrgfldext2 33651 . . . . 5 (𝜑𝐸/FldExt𝐾)
87 extdgcl 33645 . . . . 5 (𝐸/FldExt𝐾 → (𝐸[:]𝐾) ∈ ℕ0*)
8886, 87syl 17 . . . 4 (𝜑 → (𝐸[:]𝐾) ∈ ℕ0*)
8911nnnn0d 12479 . . . . 5 (𝜑 → (𝐼[:]𝐾) ∈ ℕ0)
9089, 9nn0mulcld 12484 . . . 4 (𝜑 → ((𝐼[:]𝐾) · (𝐽[:]𝐾)) ∈ ℕ0)
911, 2, 3, 4, 5, 6, 7, 8, 9, 10fldextrspundglemul 33667 . . . . 5 (𝜑 → (𝐸[:]𝐾) ≤ ((𝐼[:]𝐾) ·e (𝐽[:]𝐾)))
9211nnred 12177 . . . . . 6 (𝜑 → (𝐼[:]𝐾) ∈ ℝ)
939nn0red 12480 . . . . . 6 (𝜑 → (𝐽[:]𝐾) ∈ ℝ)
94 rexmul 13207 . . . . . 6 (((𝐼[:]𝐾) ∈ ℝ ∧ (𝐽[:]𝐾) ∈ ℝ) → ((𝐼[:]𝐾) ·e (𝐽[:]𝐾)) = ((𝐼[:]𝐾) · (𝐽[:]𝐾)))
9592, 93, 94syl2anc 584 . . . . 5 (𝜑 → ((𝐼[:]𝐾) ·e (𝐽[:]𝐾)) = ((𝐼[:]𝐾) · (𝐽[:]𝐾)))
9691, 95breqtrd 5128 . . . 4 (𝜑 → (𝐸[:]𝐾) ≤ ((𝐼[:]𝐾) · (𝐽[:]𝐾)))
97 xnn0lenn0nn0 13181 . . . 4 (((𝐸[:]𝐾) ∈ ℕ0* ∧ ((𝐼[:]𝐾) · (𝐽[:]𝐾)) ∈ ℕ0 ∧ (𝐸[:]𝐾) ≤ ((𝐼[:]𝐾) · (𝐽[:]𝐾))) → (𝐸[:]𝐾) ∈ ℕ0)
9888, 90, 96, 97syl3anc 1373 . . 3 (𝜑 → (𝐸[:]𝐾) ∈ ℕ0)
9998nn0zd 12531 . 2 (𝜑 → (𝐸[:]𝐾) ∈ ℤ)
10015, 2, 10, 4, 7, 20fldgenfldext 33656 . . . 4 (𝜑𝐸/FldExt𝐼)
1012, 4, 7, 5, 1fldsdrgfldext2 33651 . . . 4 (𝜑𝐼/FldExt𝐾)
102 extdgmul 33652 . . . 4 ((𝐸/FldExt𝐼𝐼/FldExt𝐾) → (𝐸[:]𝐾) = ((𝐸[:]𝐼) ·e (𝐼[:]𝐾)))
103100, 101, 102syl2anc 584 . . 3 (𝜑 → (𝐸[:]𝐾) = ((𝐸[:]𝐼) ·e (𝐼[:]𝐾)))
10412nn0red 12480 . . . 4 (𝜑 → (𝐸[:]𝐼) ∈ ℝ)
105 rexmul 13207 . . . 4 (((𝐸[:]𝐼) ∈ ℝ ∧ (𝐼[:]𝐾) ∈ ℝ) → ((𝐸[:]𝐼) ·e (𝐼[:]𝐾)) = ((𝐸[:]𝐼) · (𝐼[:]𝐾)))
106104, 92, 105syl2anc 584 . . 3 (𝜑 → ((𝐸[:]𝐼) ·e (𝐼[:]𝐾)) = ((𝐸[:]𝐼) · (𝐼[:]𝐾)))
107103, 106eqtr2d 2765 . 2 (𝜑 → ((𝐸[:]𝐼) · (𝐼[:]𝐾)) = (𝐸[:]𝐾))
108 dvds0lem 16212 . 2 ((((𝐸[:]𝐼) ∈ ℤ ∧ (𝐼[:]𝐾) ∈ ℤ ∧ (𝐸[:]𝐾) ∈ ℤ) ∧ ((𝐸[:]𝐼) · (𝐼[:]𝐾)) = (𝐸[:]𝐾)) → (𝐼[:]𝐾) ∥ (𝐸[:]𝐾))
10913, 14, 99, 107, 108syl31anc 1375 1 (𝜑 → (𝐼[:]𝐾) ∥ (𝐸[:]𝐾))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  Vcvv 3444  cun 3909  wss 3911   class class class wbr 5102  cfv 6499  (class class class)co 7369  cr 11043   · cmul 11049  cle 11185  cn 12162  0cn0 12418  0*cxnn0 12491  cz 12505   ·e cxmu 13047  cdvds 16198  Basecbs 17155  s cress 17176  1rcur 20101  Ringcrg 20153  SubRingcsubrg 20489  RingSpancrgspn 20530  DivRingcdr 20649  Fieldcfield 20650  SubDRingcsdrg 20706   fldGen cfldgen 33276  /FldExtcfldext 33627  [:]cextdg 33629
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-reg 9521  ax-inf2 9570  ax-ac2 10392  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122  ax-addf 11123
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-iin 4954  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-of 7633  df-rpss 7679  df-om 7823  df-1st 7947  df-2nd 7948  df-supp 8117  df-tpos 8182  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-oadd 8415  df-er 8648  df-map 8778  df-ixp 8848  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-fsupp 9289  df-sup 9369  df-inf 9370  df-oi 9439  df-r1 9693  df-rank 9694  df-dju 9830  df-card 9868  df-acn 9871  df-ac 10045  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12419  df-xnn0 12492  df-z 12506  df-dec 12626  df-uz 12770  df-rp 12928  df-xneg 13048  df-xadd 13049  df-xmul 13050  df-icc 13289  df-fz 13445  df-fzo 13592  df-seq 13943  df-exp 14003  df-hash 14272  df-word 14455  df-lsw 14504  df-concat 14512  df-s1 14537  df-substr 14582  df-pfx 14612  df-s2 14790  df-cj 15041  df-re 15042  df-im 15043  df-sqrt 15177  df-abs 15178  df-clim 15430  df-sum 15629  df-dvds 16199  df-struct 17093  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-ress 17177  df-plusg 17209  df-mulr 17210  df-starv 17211  df-sca 17212  df-vsca 17213  df-ip 17214  df-tset 17215  df-ple 17216  df-ocomp 17217  df-ds 17218  df-unif 17219  df-hom 17220  df-cco 17221  df-0g 17380  df-gsum 17381  df-prds 17386  df-pws 17388  df-mre 17523  df-mrc 17524  df-mri 17525  df-acs 17526  df-proset 18235  df-drs 18236  df-poset 18254  df-ipo 18469  df-mgm 18549  df-sgrp 18628  df-mnd 18644  df-mhm 18692  df-submnd 18693  df-grp 18850  df-minusg 18851  df-sbg 18852  df-mulg 18982  df-subg 19037  df-ghm 19127  df-cntz 19231  df-cntr 19232  df-lsm 19550  df-cmn 19696  df-abl 19697  df-mgp 20061  df-rng 20073  df-ur 20102  df-ring 20155  df-cring 20156  df-oppr 20257  df-dvdsr 20277  df-unit 20278  df-invr 20308  df-dvr 20321  df-nzr 20433  df-subrng 20466  df-subrg 20490  df-rgspn 20531  df-rlreg 20614  df-domn 20615  df-idom 20616  df-drng 20651  df-field 20652  df-sdrg 20707  df-lmod 20800  df-lss 20870  df-lsp 20910  df-lmhm 20961  df-lmim 20962  df-lbs 21014  df-lvec 21042  df-sra 21112  df-rgmod 21113  df-cnfld 21297  df-zring 21389  df-dsmm 21674  df-frlm 21689  df-uvc 21725  df-lindf 21748  df-linds 21749  df-assa 21795  df-ind 32824  df-fldgen 33277  df-dim 33588  df-fldext 33630  df-extdg 33631
This theorem is referenced by:  fldext2rspun  33670
  Copyright terms: Public domain W3C validator