Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fldextrspundgdvds Structured version   Visualization version   GIF version

Theorem fldextrspundgdvds 33731
Description: Given two finite extensions 𝐼 / 𝐾 and 𝐽 / 𝐾 of the same field 𝐾, the degree of the extension 𝐼 / 𝐾 divides the degree of the extension 𝐸 / 𝐾, 𝐸 being the composite field 𝐼𝐽. (Contributed by Thierry Arnoux, 19-Oct-2025.)
Hypotheses
Ref Expression
fldextrspun.k 𝐾 = (𝐿s 𝐹)
fldextrspun.i 𝐼 = (𝐿s 𝐺)
fldextrspun.j 𝐽 = (𝐿s 𝐻)
fldextrspun.2 (𝜑𝐿 ∈ Field)
fldextrspun.3 (𝜑𝐹 ∈ (SubDRing‘𝐼))
fldextrspun.4 (𝜑𝐹 ∈ (SubDRing‘𝐽))
fldextrspun.5 (𝜑𝐺 ∈ (SubDRing‘𝐿))
fldextrspun.6 (𝜑𝐻 ∈ (SubDRing‘𝐿))
fldextrspundglemul.7 (𝜑 → (𝐽[:]𝐾) ∈ ℕ0)
fldextrspundglemul.1 𝐸 = (𝐿s (𝐿 fldGen (𝐺𝐻)))
fldextrspundgledvds.1 (𝜑 → (𝐼[:]𝐾) ∈ ℕ)
Assertion
Ref Expression
fldextrspundgdvds (𝜑 → (𝐼[:]𝐾) ∥ (𝐸[:]𝐾))

Proof of Theorem fldextrspundgdvds
StepHypRef Expression
1 fldextrspun.k . . . 4 𝐾 = (𝐿s 𝐹)
2 fldextrspun.i . . . 4 𝐼 = (𝐿s 𝐺)
3 fldextrspun.j . . . 4 𝐽 = (𝐿s 𝐻)
4 fldextrspun.2 . . . 4 (𝜑𝐿 ∈ Field)
5 fldextrspun.3 . . . 4 (𝜑𝐹 ∈ (SubDRing‘𝐼))
6 fldextrspun.4 . . . 4 (𝜑𝐹 ∈ (SubDRing‘𝐽))
7 fldextrspun.5 . . . 4 (𝜑𝐺 ∈ (SubDRing‘𝐿))
8 fldextrspun.6 . . . 4 (𝜑𝐻 ∈ (SubDRing‘𝐿))
9 fldextrspundglemul.7 . . . 4 (𝜑 → (𝐽[:]𝐾) ∈ ℕ0)
10 fldextrspundglemul.1 . . . 4 𝐸 = (𝐿s (𝐿 fldGen (𝐺𝐻)))
11 fldextrspundgledvds.1 . . . 4 (𝜑 → (𝐼[:]𝐾) ∈ ℕ)
121, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11fldextrspundgdvdslem 33730 . . 3 (𝜑 → (𝐸[:]𝐼) ∈ ℕ0)
1312nn0zd 12639 . 2 (𝜑 → (𝐸[:]𝐼) ∈ ℤ)
1411nnzd 12640 . 2 (𝜑 → (𝐼[:]𝐾) ∈ ℤ)
15 eqid 2737 . . . . . . 7 (Base‘𝐿) = (Base‘𝐿)
164flddrngd 20741 . . . . . . 7 (𝜑𝐿 ∈ DivRing)
1715sdrgss 20794 . . . . . . . . 9 (𝐺 ∈ (SubDRing‘𝐿) → 𝐺 ⊆ (Base‘𝐿))
187, 17syl 17 . . . . . . . 8 (𝜑𝐺 ⊆ (Base‘𝐿))
1915sdrgss 20794 . . . . . . . . 9 (𝐻 ∈ (SubDRing‘𝐿) → 𝐻 ⊆ (Base‘𝐿))
208, 19syl 17 . . . . . . . 8 (𝜑𝐻 ⊆ (Base‘𝐿))
2118, 20unssd 4192 . . . . . . 7 (𝜑 → (𝐺𝐻) ⊆ (Base‘𝐿))
2215, 16, 21fldgensdrg 33316 . . . . . 6 (𝜑 → (𝐿 fldGen (𝐺𝐻)) ∈ (SubDRing‘𝐿))
23 eqid 2737 . . . . . . . . . . . 12 (RingSpan‘𝐿) = (RingSpan‘𝐿)
24 eqid 2737 . . . . . . . . . . . 12 ((RingSpan‘𝐿)‘(𝐺𝐻)) = ((RingSpan‘𝐿)‘(𝐺𝐻))
25 eqid 2737 . . . . . . . . . . . 12 (𝐿s ((RingSpan‘𝐿)‘(𝐺𝐻))) = (𝐿s ((RingSpan‘𝐿)‘(𝐺𝐻)))
261, 2, 3, 4, 5, 6, 7, 8, 9, 23, 24, 25fldextrspunlem2 33727 . . . . . . . . . . 11 (𝜑 → ((RingSpan‘𝐿)‘(𝐺𝐻)) = (𝐿 fldGen (𝐺𝐻)))
2726oveq2d 7447 . . . . . . . . . 10 (𝜑 → (𝐿s ((RingSpan‘𝐿)‘(𝐺𝐻))) = (𝐿s (𝐿 fldGen (𝐺𝐻))))
2810, 27eqtr4id 2796 . . . . . . . . 9 (𝜑𝐸 = (𝐿s ((RingSpan‘𝐿)‘(𝐺𝐻))))
291, 2, 3, 4, 5, 6, 7, 8, 9, 23, 24, 25fldextrspunfld 33726 . . . . . . . . 9 (𝜑 → (𝐿s ((RingSpan‘𝐿)‘(𝐺𝐻))) ∈ Field)
3028, 29eqeltrd 2841 . . . . . . . 8 (𝜑𝐸 ∈ Field)
3130flddrngd 20741 . . . . . . 7 (𝜑𝐸 ∈ DivRing)
3231drngringd 20737 . . . . . . . 8 (𝜑𝐸 ∈ Ring)
3310oveq1i 7441 . . . . . . . . . . . 12 (𝐸s 𝐹) = ((𝐿s (𝐿 fldGen (𝐺𝐻))) ↾s 𝐹)
34 ovexd 7466 . . . . . . . . . . . . 13 (𝜑 → (𝐿 fldGen (𝐺𝐻)) ∈ V)
35 eqid 2737 . . . . . . . . . . . . . . . . . 18 (Base‘𝐼) = (Base‘𝐼)
3635sdrgss 20794 . . . . . . . . . . . . . . . . 17 (𝐹 ∈ (SubDRing‘𝐼) → 𝐹 ⊆ (Base‘𝐼))
375, 36syl 17 . . . . . . . . . . . . . . . 16 (𝜑𝐹 ⊆ (Base‘𝐼))
382, 15ressbas2 17283 . . . . . . . . . . . . . . . . 17 (𝐺 ⊆ (Base‘𝐿) → 𝐺 = (Base‘𝐼))
3918, 38syl 17 . . . . . . . . . . . . . . . 16 (𝜑𝐺 = (Base‘𝐼))
4037, 39sseqtrrd 4021 . . . . . . . . . . . . . . 15 (𝜑𝐹𝐺)
41 ssun1 4178 . . . . . . . . . . . . . . . 16 𝐺 ⊆ (𝐺𝐻)
4241a1i 11 . . . . . . . . . . . . . . 15 (𝜑𝐺 ⊆ (𝐺𝐻))
4340, 42sstrd 3994 . . . . . . . . . . . . . 14 (𝜑𝐹 ⊆ (𝐺𝐻))
4415, 16, 21fldgenssid 33315 . . . . . . . . . . . . . 14 (𝜑 → (𝐺𝐻) ⊆ (𝐿 fldGen (𝐺𝐻)))
4543, 44sstrd 3994 . . . . . . . . . . . . 13 (𝜑𝐹 ⊆ (𝐿 fldGen (𝐺𝐻)))
46 ressabs 17294 . . . . . . . . . . . . 13 (((𝐿 fldGen (𝐺𝐻)) ∈ V ∧ 𝐹 ⊆ (𝐿 fldGen (𝐺𝐻))) → ((𝐿s (𝐿 fldGen (𝐺𝐻))) ↾s 𝐹) = (𝐿s 𝐹))
4734, 45, 46syl2anc 584 . . . . . . . . . . . 12 (𝜑 → ((𝐿s (𝐿 fldGen (𝐺𝐻))) ↾s 𝐹) = (𝐿s 𝐹))
4833, 47eqtrid 2789 . . . . . . . . . . 11 (𝜑 → (𝐸s 𝐹) = (𝐿s 𝐹))
492oveq1i 7441 . . . . . . . . . . . 12 (𝐼s 𝐹) = ((𝐿s 𝐺) ↾s 𝐹)
50 ressabs 17294 . . . . . . . . . . . . 13 ((𝐺 ∈ (SubDRing‘𝐿) ∧ 𝐹𝐺) → ((𝐿s 𝐺) ↾s 𝐹) = (𝐿s 𝐹))
517, 40, 50syl2anc 584 . . . . . . . . . . . 12 (𝜑 → ((𝐿s 𝐺) ↾s 𝐹) = (𝐿s 𝐹))
5249, 51eqtrid 2789 . . . . . . . . . . 11 (𝜑 → (𝐼s 𝐹) = (𝐿s 𝐹))
5348, 52eqtr4d 2780 . . . . . . . . . 10 (𝜑 → (𝐸s 𝐹) = (𝐼s 𝐹))
54 eqid 2737 . . . . . . . . . . . 12 (𝐼s 𝐹) = (𝐼s 𝐹)
5554sdrgdrng 20791 . . . . . . . . . . 11 (𝐹 ∈ (SubDRing‘𝐼) → (𝐼s 𝐹) ∈ DivRing)
565, 55syl 17 . . . . . . . . . 10 (𝜑 → (𝐼s 𝐹) ∈ DivRing)
5753, 56eqeltrd 2841 . . . . . . . . 9 (𝜑 → (𝐸s 𝐹) ∈ DivRing)
5857drngringd 20737 . . . . . . . 8 (𝜑 → (𝐸s 𝐹) ∈ Ring)
5915, 16, 21fldgenssv 33317 . . . . . . . . . 10 (𝜑 → (𝐿 fldGen (𝐺𝐻)) ⊆ (Base‘𝐿))
6010, 15ressbas2 17283 . . . . . . . . . 10 ((𝐿 fldGen (𝐺𝐻)) ⊆ (Base‘𝐿) → (𝐿 fldGen (𝐺𝐻)) = (Base‘𝐸))
6159, 60syl 17 . . . . . . . . 9 (𝜑 → (𝐿 fldGen (𝐺𝐻)) = (Base‘𝐸))
6245, 61sseqtrd 4020 . . . . . . . 8 (𝜑𝐹 ⊆ (Base‘𝐸))
6316drngringd 20737 . . . . . . . . . . 11 (𝜑𝐿 ∈ Ring)
6442, 44sstrd 3994 . . . . . . . . . . . 12 (𝜑𝐺 ⊆ (𝐿 fldGen (𝐺𝐻)))
65 sdrgsubrg 20792 . . . . . . . . . . . . 13 (𝐺 ∈ (SubDRing‘𝐿) → 𝐺 ∈ (SubRing‘𝐿))
66 eqid 2737 . . . . . . . . . . . . . 14 (1r𝐿) = (1r𝐿)
6766subrg1cl 20580 . . . . . . . . . . . . 13 (𝐺 ∈ (SubRing‘𝐿) → (1r𝐿) ∈ 𝐺)
687, 65, 673syl 18 . . . . . . . . . . . 12 (𝜑 → (1r𝐿) ∈ 𝐺)
6964, 68sseldd 3984 . . . . . . . . . . 11 (𝜑 → (1r𝐿) ∈ (𝐿 fldGen (𝐺𝐻)))
7010, 15, 66ress1r 33238 . . . . . . . . . . 11 ((𝐿 ∈ Ring ∧ (1r𝐿) ∈ (𝐿 fldGen (𝐺𝐻)) ∧ (𝐿 fldGen (𝐺𝐻)) ⊆ (Base‘𝐿)) → (1r𝐿) = (1r𝐸))
7163, 69, 59, 70syl3anc 1373 . . . . . . . . . 10 (𝜑 → (1r𝐿) = (1r𝐸))
722, 15, 66ress1r 33238 . . . . . . . . . . 11 ((𝐿 ∈ Ring ∧ (1r𝐿) ∈ 𝐺𝐺 ⊆ (Base‘𝐿)) → (1r𝐿) = (1r𝐼))
7363, 68, 18, 72syl3anc 1373 . . . . . . . . . 10 (𝜑 → (1r𝐿) = (1r𝐼))
7471, 73eqtr3d 2779 . . . . . . . . 9 (𝜑 → (1r𝐸) = (1r𝐼))
75 sdrgsubrg 20792 . . . . . . . . . 10 (𝐹 ∈ (SubDRing‘𝐼) → 𝐹 ∈ (SubRing‘𝐼))
76 eqid 2737 . . . . . . . . . . 11 (1r𝐼) = (1r𝐼)
7776subrg1cl 20580 . . . . . . . . . 10 (𝐹 ∈ (SubRing‘𝐼) → (1r𝐼) ∈ 𝐹)
785, 75, 773syl 18 . . . . . . . . 9 (𝜑 → (1r𝐼) ∈ 𝐹)
7974, 78eqeltrd 2841 . . . . . . . 8 (𝜑 → (1r𝐸) ∈ 𝐹)
80 eqid 2737 . . . . . . . . 9 (Base‘𝐸) = (Base‘𝐸)
81 eqid 2737 . . . . . . . . 9 (1r𝐸) = (1r𝐸)
8280, 81issubrg 20571 . . . . . . . 8 (𝐹 ∈ (SubRing‘𝐸) ↔ ((𝐸 ∈ Ring ∧ (𝐸s 𝐹) ∈ Ring) ∧ (𝐹 ⊆ (Base‘𝐸) ∧ (1r𝐸) ∈ 𝐹)))
8332, 58, 62, 79, 82syl22anbrc 32474 . . . . . . 7 (𝜑𝐹 ∈ (SubRing‘𝐸))
84 issdrg 20789 . . . . . . 7 (𝐹 ∈ (SubDRing‘𝐸) ↔ (𝐸 ∈ DivRing ∧ 𝐹 ∈ (SubRing‘𝐸) ∧ (𝐸s 𝐹) ∈ DivRing))
8531, 83, 57, 84syl3anbrc 1344 . . . . . 6 (𝜑𝐹 ∈ (SubDRing‘𝐸))
8610, 4, 22, 85, 1fldsdrgfldext2 33713 . . . . 5 (𝜑𝐸/FldExt𝐾)
87 extdgcl 33707 . . . . 5 (𝐸/FldExt𝐾 → (𝐸[:]𝐾) ∈ ℕ0*)
8886, 87syl 17 . . . 4 (𝜑 → (𝐸[:]𝐾) ∈ ℕ0*)
8911nnnn0d 12587 . . . . 5 (𝜑 → (𝐼[:]𝐾) ∈ ℕ0)
9089, 9nn0mulcld 12592 . . . 4 (𝜑 → ((𝐼[:]𝐾) · (𝐽[:]𝐾)) ∈ ℕ0)
911, 2, 3, 4, 5, 6, 7, 8, 9, 10fldextrspundglemul 33729 . . . . 5 (𝜑 → (𝐸[:]𝐾) ≤ ((𝐼[:]𝐾) ·e (𝐽[:]𝐾)))
9211nnred 12281 . . . . . 6 (𝜑 → (𝐼[:]𝐾) ∈ ℝ)
939nn0red 12588 . . . . . 6 (𝜑 → (𝐽[:]𝐾) ∈ ℝ)
94 rexmul 13313 . . . . . 6 (((𝐼[:]𝐾) ∈ ℝ ∧ (𝐽[:]𝐾) ∈ ℝ) → ((𝐼[:]𝐾) ·e (𝐽[:]𝐾)) = ((𝐼[:]𝐾) · (𝐽[:]𝐾)))
9592, 93, 94syl2anc 584 . . . . 5 (𝜑 → ((𝐼[:]𝐾) ·e (𝐽[:]𝐾)) = ((𝐼[:]𝐾) · (𝐽[:]𝐾)))
9691, 95breqtrd 5169 . . . 4 (𝜑 → (𝐸[:]𝐾) ≤ ((𝐼[:]𝐾) · (𝐽[:]𝐾)))
97 xnn0lenn0nn0 13287 . . . 4 (((𝐸[:]𝐾) ∈ ℕ0* ∧ ((𝐼[:]𝐾) · (𝐽[:]𝐾)) ∈ ℕ0 ∧ (𝐸[:]𝐾) ≤ ((𝐼[:]𝐾) · (𝐽[:]𝐾))) → (𝐸[:]𝐾) ∈ ℕ0)
9888, 90, 96, 97syl3anc 1373 . . 3 (𝜑 → (𝐸[:]𝐾) ∈ ℕ0)
9998nn0zd 12639 . 2 (𝜑 → (𝐸[:]𝐾) ∈ ℤ)
10015, 2, 10, 4, 7, 20fldgenfldext 33718 . . . 4 (𝜑𝐸/FldExt𝐼)
1012, 4, 7, 5, 1fldsdrgfldext2 33713 . . . 4 (𝜑𝐼/FldExt𝐾)
102 extdgmul 33714 . . . 4 ((𝐸/FldExt𝐼𝐼/FldExt𝐾) → (𝐸[:]𝐾) = ((𝐸[:]𝐼) ·e (𝐼[:]𝐾)))
103100, 101, 102syl2anc 584 . . 3 (𝜑 → (𝐸[:]𝐾) = ((𝐸[:]𝐼) ·e (𝐼[:]𝐾)))
10412nn0red 12588 . . . 4 (𝜑 → (𝐸[:]𝐼) ∈ ℝ)
105 rexmul 13313 . . . 4 (((𝐸[:]𝐼) ∈ ℝ ∧ (𝐼[:]𝐾) ∈ ℝ) → ((𝐸[:]𝐼) ·e (𝐼[:]𝐾)) = ((𝐸[:]𝐼) · (𝐼[:]𝐾)))
106104, 92, 105syl2anc 584 . . 3 (𝜑 → ((𝐸[:]𝐼) ·e (𝐼[:]𝐾)) = ((𝐸[:]𝐼) · (𝐼[:]𝐾)))
107103, 106eqtr2d 2778 . 2 (𝜑 → ((𝐸[:]𝐼) · (𝐼[:]𝐾)) = (𝐸[:]𝐾))
108 dvds0lem 16304 . 2 ((((𝐸[:]𝐼) ∈ ℤ ∧ (𝐼[:]𝐾) ∈ ℤ ∧ (𝐸[:]𝐾) ∈ ℤ) ∧ ((𝐸[:]𝐼) · (𝐼[:]𝐾)) = (𝐸[:]𝐾)) → (𝐼[:]𝐾) ∥ (𝐸[:]𝐾))
10913, 14, 99, 107, 108syl31anc 1375 1 (𝜑 → (𝐼[:]𝐾) ∥ (𝐸[:]𝐾))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2108  Vcvv 3480  cun 3949  wss 3951   class class class wbr 5143  cfv 6561  (class class class)co 7431  cr 11154   · cmul 11160  cle 11296  cn 12266  0cn0 12526  0*cxnn0 12599  cz 12613   ·e cxmu 13153  cdvds 16290  Basecbs 17247  s cress 17274  1rcur 20178  Ringcrg 20230  SubRingcsubrg 20569  RingSpancrgspn 20610  DivRingcdr 20729  Fieldcfield 20730  SubDRingcsdrg 20787   fldGen cfldgen 33312  /FldExtcfldext 33689  [:]cextdg 33692
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-reg 9632  ax-inf2 9681  ax-ac2 10503  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233  ax-addf 11234
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-iin 4994  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-rpss 7743  df-om 7888  df-1st 8014  df-2nd 8015  df-supp 8186  df-tpos 8251  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-2o 8507  df-oadd 8510  df-er 8745  df-map 8868  df-ixp 8938  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-fsupp 9402  df-sup 9482  df-inf 9483  df-oi 9550  df-r1 9804  df-rank 9805  df-dju 9941  df-card 9979  df-acn 9982  df-ac 10156  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-7 12334  df-8 12335  df-9 12336  df-n0 12527  df-xnn0 12600  df-z 12614  df-dec 12734  df-uz 12879  df-rp 13035  df-xneg 13154  df-xadd 13155  df-xmul 13156  df-icc 13394  df-fz 13548  df-fzo 13695  df-seq 14043  df-exp 14103  df-hash 14370  df-word 14553  df-lsw 14601  df-concat 14609  df-s1 14634  df-substr 14679  df-pfx 14709  df-s2 14887  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-clim 15524  df-sum 15723  df-dvds 16291  df-struct 17184  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-ress 17275  df-plusg 17310  df-mulr 17311  df-starv 17312  df-sca 17313  df-vsca 17314  df-ip 17315  df-tset 17316  df-ple 17317  df-ocomp 17318  df-ds 17319  df-unif 17320  df-hom 17321  df-cco 17322  df-0g 17486  df-gsum 17487  df-prds 17492  df-pws 17494  df-mre 17629  df-mrc 17630  df-mri 17631  df-acs 17632  df-proset 18340  df-drs 18341  df-poset 18359  df-ipo 18573  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-mhm 18796  df-submnd 18797  df-grp 18954  df-minusg 18955  df-sbg 18956  df-mulg 19086  df-subg 19141  df-ghm 19231  df-cntz 19335  df-cntr 19336  df-lsm 19654  df-cmn 19800  df-abl 19801  df-mgp 20138  df-rng 20150  df-ur 20179  df-ring 20232  df-cring 20233  df-oppr 20334  df-dvdsr 20357  df-unit 20358  df-invr 20388  df-dvr 20401  df-nzr 20513  df-subrng 20546  df-subrg 20570  df-rgspn 20611  df-rlreg 20694  df-domn 20695  df-idom 20696  df-drng 20731  df-field 20732  df-sdrg 20788  df-lmod 20860  df-lss 20930  df-lsp 20970  df-lmhm 21021  df-lmim 21022  df-lbs 21074  df-lvec 21102  df-sra 21172  df-rgmod 21173  df-cnfld 21365  df-zring 21458  df-dsmm 21752  df-frlm 21767  df-uvc 21803  df-lindf 21826  df-linds 21827  df-assa 21873  df-ind 32836  df-fldgen 33313  df-dim 33650  df-fldext 33693  df-extdg 33694
This theorem is referenced by:  fldext2rspun  33732
  Copyright terms: Public domain W3C validator