Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fldextrspundgdvds Structured version   Visualization version   GIF version

Theorem fldextrspundgdvds 33683
Description: Given two finite extensions 𝐼 / 𝐾 and 𝐽 / 𝐾 of the same field 𝐾, the degree of the extension 𝐼 / 𝐾 divides the degree of the extension 𝐸 / 𝐾, 𝐸 being the composite field 𝐼𝐽. (Contributed by Thierry Arnoux, 19-Oct-2025.)
Hypotheses
Ref Expression
fldextrspun.k 𝐾 = (𝐿s 𝐹)
fldextrspun.i 𝐼 = (𝐿s 𝐺)
fldextrspun.j 𝐽 = (𝐿s 𝐻)
fldextrspun.2 (𝜑𝐿 ∈ Field)
fldextrspun.3 (𝜑𝐹 ∈ (SubDRing‘𝐼))
fldextrspun.4 (𝜑𝐹 ∈ (SubDRing‘𝐽))
fldextrspun.5 (𝜑𝐺 ∈ (SubDRing‘𝐿))
fldextrspun.6 (𝜑𝐻 ∈ (SubDRing‘𝐿))
fldextrspundglemul.7 (𝜑 → (𝐽[:]𝐾) ∈ ℕ0)
fldextrspundglemul.1 𝐸 = (𝐿s (𝐿 fldGen (𝐺𝐻)))
fldextrspundgledvds.1 (𝜑 → (𝐼[:]𝐾) ∈ ℕ)
Assertion
Ref Expression
fldextrspundgdvds (𝜑 → (𝐼[:]𝐾) ∥ (𝐸[:]𝐾))

Proof of Theorem fldextrspundgdvds
StepHypRef Expression
1 fldextrspun.k . . . 4 𝐾 = (𝐿s 𝐹)
2 fldextrspun.i . . . 4 𝐼 = (𝐿s 𝐺)
3 fldextrspun.j . . . 4 𝐽 = (𝐿s 𝐻)
4 fldextrspun.2 . . . 4 (𝜑𝐿 ∈ Field)
5 fldextrspun.3 . . . 4 (𝜑𝐹 ∈ (SubDRing‘𝐼))
6 fldextrspun.4 . . . 4 (𝜑𝐹 ∈ (SubDRing‘𝐽))
7 fldextrspun.5 . . . 4 (𝜑𝐺 ∈ (SubDRing‘𝐿))
8 fldextrspun.6 . . . 4 (𝜑𝐻 ∈ (SubDRing‘𝐿))
9 fldextrspundglemul.7 . . . 4 (𝜑 → (𝐽[:]𝐾) ∈ ℕ0)
10 fldextrspundglemul.1 . . . 4 𝐸 = (𝐿s (𝐿 fldGen (𝐺𝐻)))
11 fldextrspundgledvds.1 . . . 4 (𝜑 → (𝐼[:]𝐾) ∈ ℕ)
121, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11fldextrspundgdvdslem 33682 . . 3 (𝜑 → (𝐸[:]𝐼) ∈ ℕ0)
1312nn0zd 12562 . 2 (𝜑 → (𝐸[:]𝐼) ∈ ℤ)
1411nnzd 12563 . 2 (𝜑 → (𝐼[:]𝐾) ∈ ℤ)
15 eqid 2730 . . . . . . 7 (Base‘𝐿) = (Base‘𝐿)
164flddrngd 20657 . . . . . . 7 (𝜑𝐿 ∈ DivRing)
1715sdrgss 20709 . . . . . . . . 9 (𝐺 ∈ (SubDRing‘𝐿) → 𝐺 ⊆ (Base‘𝐿))
187, 17syl 17 . . . . . . . 8 (𝜑𝐺 ⊆ (Base‘𝐿))
1915sdrgss 20709 . . . . . . . . 9 (𝐻 ∈ (SubDRing‘𝐿) → 𝐻 ⊆ (Base‘𝐿))
208, 19syl 17 . . . . . . . 8 (𝜑𝐻 ⊆ (Base‘𝐿))
2118, 20unssd 4158 . . . . . . 7 (𝜑 → (𝐺𝐻) ⊆ (Base‘𝐿))
2215, 16, 21fldgensdrg 33271 . . . . . 6 (𝜑 → (𝐿 fldGen (𝐺𝐻)) ∈ (SubDRing‘𝐿))
23 eqid 2730 . . . . . . . . . . . 12 (RingSpan‘𝐿) = (RingSpan‘𝐿)
24 eqid 2730 . . . . . . . . . . . 12 ((RingSpan‘𝐿)‘(𝐺𝐻)) = ((RingSpan‘𝐿)‘(𝐺𝐻))
25 eqid 2730 . . . . . . . . . . . 12 (𝐿s ((RingSpan‘𝐿)‘(𝐺𝐻))) = (𝐿s ((RingSpan‘𝐿)‘(𝐺𝐻)))
261, 2, 3, 4, 5, 6, 7, 8, 9, 23, 24, 25fldextrspunlem2 33679 . . . . . . . . . . 11 (𝜑 → ((RingSpan‘𝐿)‘(𝐺𝐻)) = (𝐿 fldGen (𝐺𝐻)))
2726oveq2d 7406 . . . . . . . . . 10 (𝜑 → (𝐿s ((RingSpan‘𝐿)‘(𝐺𝐻))) = (𝐿s (𝐿 fldGen (𝐺𝐻))))
2810, 27eqtr4id 2784 . . . . . . . . 9 (𝜑𝐸 = (𝐿s ((RingSpan‘𝐿)‘(𝐺𝐻))))
291, 2, 3, 4, 5, 6, 7, 8, 9, 23, 24, 25fldextrspunfld 33678 . . . . . . . . 9 (𝜑 → (𝐿s ((RingSpan‘𝐿)‘(𝐺𝐻))) ∈ Field)
3028, 29eqeltrd 2829 . . . . . . . 8 (𝜑𝐸 ∈ Field)
3130flddrngd 20657 . . . . . . 7 (𝜑𝐸 ∈ DivRing)
3231drngringd 20653 . . . . . . . 8 (𝜑𝐸 ∈ Ring)
3310oveq1i 7400 . . . . . . . . . . . 12 (𝐸s 𝐹) = ((𝐿s (𝐿 fldGen (𝐺𝐻))) ↾s 𝐹)
34 ovexd 7425 . . . . . . . . . . . . 13 (𝜑 → (𝐿 fldGen (𝐺𝐻)) ∈ V)
35 eqid 2730 . . . . . . . . . . . . . . . . . 18 (Base‘𝐼) = (Base‘𝐼)
3635sdrgss 20709 . . . . . . . . . . . . . . . . 17 (𝐹 ∈ (SubDRing‘𝐼) → 𝐹 ⊆ (Base‘𝐼))
375, 36syl 17 . . . . . . . . . . . . . . . 16 (𝜑𝐹 ⊆ (Base‘𝐼))
382, 15ressbas2 17215 . . . . . . . . . . . . . . . . 17 (𝐺 ⊆ (Base‘𝐿) → 𝐺 = (Base‘𝐼))
3918, 38syl 17 . . . . . . . . . . . . . . . 16 (𝜑𝐺 = (Base‘𝐼))
4037, 39sseqtrrd 3987 . . . . . . . . . . . . . . 15 (𝜑𝐹𝐺)
41 ssun1 4144 . . . . . . . . . . . . . . . 16 𝐺 ⊆ (𝐺𝐻)
4241a1i 11 . . . . . . . . . . . . . . 15 (𝜑𝐺 ⊆ (𝐺𝐻))
4340, 42sstrd 3960 . . . . . . . . . . . . . 14 (𝜑𝐹 ⊆ (𝐺𝐻))
4415, 16, 21fldgenssid 33270 . . . . . . . . . . . . . 14 (𝜑 → (𝐺𝐻) ⊆ (𝐿 fldGen (𝐺𝐻)))
4543, 44sstrd 3960 . . . . . . . . . . . . 13 (𝜑𝐹 ⊆ (𝐿 fldGen (𝐺𝐻)))
46 ressabs 17225 . . . . . . . . . . . . 13 (((𝐿 fldGen (𝐺𝐻)) ∈ V ∧ 𝐹 ⊆ (𝐿 fldGen (𝐺𝐻))) → ((𝐿s (𝐿 fldGen (𝐺𝐻))) ↾s 𝐹) = (𝐿s 𝐹))
4734, 45, 46syl2anc 584 . . . . . . . . . . . 12 (𝜑 → ((𝐿s (𝐿 fldGen (𝐺𝐻))) ↾s 𝐹) = (𝐿s 𝐹))
4833, 47eqtrid 2777 . . . . . . . . . . 11 (𝜑 → (𝐸s 𝐹) = (𝐿s 𝐹))
492oveq1i 7400 . . . . . . . . . . . 12 (𝐼s 𝐹) = ((𝐿s 𝐺) ↾s 𝐹)
50 ressabs 17225 . . . . . . . . . . . . 13 ((𝐺 ∈ (SubDRing‘𝐿) ∧ 𝐹𝐺) → ((𝐿s 𝐺) ↾s 𝐹) = (𝐿s 𝐹))
517, 40, 50syl2anc 584 . . . . . . . . . . . 12 (𝜑 → ((𝐿s 𝐺) ↾s 𝐹) = (𝐿s 𝐹))
5249, 51eqtrid 2777 . . . . . . . . . . 11 (𝜑 → (𝐼s 𝐹) = (𝐿s 𝐹))
5348, 52eqtr4d 2768 . . . . . . . . . 10 (𝜑 → (𝐸s 𝐹) = (𝐼s 𝐹))
54 eqid 2730 . . . . . . . . . . . 12 (𝐼s 𝐹) = (𝐼s 𝐹)
5554sdrgdrng 20706 . . . . . . . . . . 11 (𝐹 ∈ (SubDRing‘𝐼) → (𝐼s 𝐹) ∈ DivRing)
565, 55syl 17 . . . . . . . . . 10 (𝜑 → (𝐼s 𝐹) ∈ DivRing)
5753, 56eqeltrd 2829 . . . . . . . . 9 (𝜑 → (𝐸s 𝐹) ∈ DivRing)
5857drngringd 20653 . . . . . . . 8 (𝜑 → (𝐸s 𝐹) ∈ Ring)
5915, 16, 21fldgenssv 33272 . . . . . . . . . 10 (𝜑 → (𝐿 fldGen (𝐺𝐻)) ⊆ (Base‘𝐿))
6010, 15ressbas2 17215 . . . . . . . . . 10 ((𝐿 fldGen (𝐺𝐻)) ⊆ (Base‘𝐿) → (𝐿 fldGen (𝐺𝐻)) = (Base‘𝐸))
6159, 60syl 17 . . . . . . . . 9 (𝜑 → (𝐿 fldGen (𝐺𝐻)) = (Base‘𝐸))
6245, 61sseqtrd 3986 . . . . . . . 8 (𝜑𝐹 ⊆ (Base‘𝐸))
6316drngringd 20653 . . . . . . . . . . 11 (𝜑𝐿 ∈ Ring)
6442, 44sstrd 3960 . . . . . . . . . . . 12 (𝜑𝐺 ⊆ (𝐿 fldGen (𝐺𝐻)))
65 sdrgsubrg 20707 . . . . . . . . . . . . 13 (𝐺 ∈ (SubDRing‘𝐿) → 𝐺 ∈ (SubRing‘𝐿))
66 eqid 2730 . . . . . . . . . . . . . 14 (1r𝐿) = (1r𝐿)
6766subrg1cl 20496 . . . . . . . . . . . . 13 (𝐺 ∈ (SubRing‘𝐿) → (1r𝐿) ∈ 𝐺)
687, 65, 673syl 18 . . . . . . . . . . . 12 (𝜑 → (1r𝐿) ∈ 𝐺)
6964, 68sseldd 3950 . . . . . . . . . . 11 (𝜑 → (1r𝐿) ∈ (𝐿 fldGen (𝐺𝐻)))
7010, 15, 66ress1r 33192 . . . . . . . . . . 11 ((𝐿 ∈ Ring ∧ (1r𝐿) ∈ (𝐿 fldGen (𝐺𝐻)) ∧ (𝐿 fldGen (𝐺𝐻)) ⊆ (Base‘𝐿)) → (1r𝐿) = (1r𝐸))
7163, 69, 59, 70syl3anc 1373 . . . . . . . . . 10 (𝜑 → (1r𝐿) = (1r𝐸))
722, 15, 66ress1r 33192 . . . . . . . . . . 11 ((𝐿 ∈ Ring ∧ (1r𝐿) ∈ 𝐺𝐺 ⊆ (Base‘𝐿)) → (1r𝐿) = (1r𝐼))
7363, 68, 18, 72syl3anc 1373 . . . . . . . . . 10 (𝜑 → (1r𝐿) = (1r𝐼))
7471, 73eqtr3d 2767 . . . . . . . . 9 (𝜑 → (1r𝐸) = (1r𝐼))
75 sdrgsubrg 20707 . . . . . . . . . 10 (𝐹 ∈ (SubDRing‘𝐼) → 𝐹 ∈ (SubRing‘𝐼))
76 eqid 2730 . . . . . . . . . . 11 (1r𝐼) = (1r𝐼)
7776subrg1cl 20496 . . . . . . . . . 10 (𝐹 ∈ (SubRing‘𝐼) → (1r𝐼) ∈ 𝐹)
785, 75, 773syl 18 . . . . . . . . 9 (𝜑 → (1r𝐼) ∈ 𝐹)
7974, 78eqeltrd 2829 . . . . . . . 8 (𝜑 → (1r𝐸) ∈ 𝐹)
80 eqid 2730 . . . . . . . . 9 (Base‘𝐸) = (Base‘𝐸)
81 eqid 2730 . . . . . . . . 9 (1r𝐸) = (1r𝐸)
8280, 81issubrg 20487 . . . . . . . 8 (𝐹 ∈ (SubRing‘𝐸) ↔ ((𝐸 ∈ Ring ∧ (𝐸s 𝐹) ∈ Ring) ∧ (𝐹 ⊆ (Base‘𝐸) ∧ (1r𝐸) ∈ 𝐹)))
8332, 58, 62, 79, 82syl22anbrc 32391 . . . . . . 7 (𝜑𝐹 ∈ (SubRing‘𝐸))
84 issdrg 20704 . . . . . . 7 (𝐹 ∈ (SubDRing‘𝐸) ↔ (𝐸 ∈ DivRing ∧ 𝐹 ∈ (SubRing‘𝐸) ∧ (𝐸s 𝐹) ∈ DivRing))
8531, 83, 57, 84syl3anbrc 1344 . . . . . 6 (𝜑𝐹 ∈ (SubDRing‘𝐸))
8610, 4, 22, 85, 1fldsdrgfldext2 33665 . . . . 5 (𝜑𝐸/FldExt𝐾)
87 extdgcl 33659 . . . . 5 (𝐸/FldExt𝐾 → (𝐸[:]𝐾) ∈ ℕ0*)
8886, 87syl 17 . . . 4 (𝜑 → (𝐸[:]𝐾) ∈ ℕ0*)
8911nnnn0d 12510 . . . . 5 (𝜑 → (𝐼[:]𝐾) ∈ ℕ0)
9089, 9nn0mulcld 12515 . . . 4 (𝜑 → ((𝐼[:]𝐾) · (𝐽[:]𝐾)) ∈ ℕ0)
911, 2, 3, 4, 5, 6, 7, 8, 9, 10fldextrspundglemul 33681 . . . . 5 (𝜑 → (𝐸[:]𝐾) ≤ ((𝐼[:]𝐾) ·e (𝐽[:]𝐾)))
9211nnred 12208 . . . . . 6 (𝜑 → (𝐼[:]𝐾) ∈ ℝ)
939nn0red 12511 . . . . . 6 (𝜑 → (𝐽[:]𝐾) ∈ ℝ)
94 rexmul 13238 . . . . . 6 (((𝐼[:]𝐾) ∈ ℝ ∧ (𝐽[:]𝐾) ∈ ℝ) → ((𝐼[:]𝐾) ·e (𝐽[:]𝐾)) = ((𝐼[:]𝐾) · (𝐽[:]𝐾)))
9592, 93, 94syl2anc 584 . . . . 5 (𝜑 → ((𝐼[:]𝐾) ·e (𝐽[:]𝐾)) = ((𝐼[:]𝐾) · (𝐽[:]𝐾)))
9691, 95breqtrd 5136 . . . 4 (𝜑 → (𝐸[:]𝐾) ≤ ((𝐼[:]𝐾) · (𝐽[:]𝐾)))
97 xnn0lenn0nn0 13212 . . . 4 (((𝐸[:]𝐾) ∈ ℕ0* ∧ ((𝐼[:]𝐾) · (𝐽[:]𝐾)) ∈ ℕ0 ∧ (𝐸[:]𝐾) ≤ ((𝐼[:]𝐾) · (𝐽[:]𝐾))) → (𝐸[:]𝐾) ∈ ℕ0)
9888, 90, 96, 97syl3anc 1373 . . 3 (𝜑 → (𝐸[:]𝐾) ∈ ℕ0)
9998nn0zd 12562 . 2 (𝜑 → (𝐸[:]𝐾) ∈ ℤ)
10015, 2, 10, 4, 7, 20fldgenfldext 33670 . . . 4 (𝜑𝐸/FldExt𝐼)
1012, 4, 7, 5, 1fldsdrgfldext2 33665 . . . 4 (𝜑𝐼/FldExt𝐾)
102 extdgmul 33666 . . . 4 ((𝐸/FldExt𝐼𝐼/FldExt𝐾) → (𝐸[:]𝐾) = ((𝐸[:]𝐼) ·e (𝐼[:]𝐾)))
103100, 101, 102syl2anc 584 . . 3 (𝜑 → (𝐸[:]𝐾) = ((𝐸[:]𝐼) ·e (𝐼[:]𝐾)))
10412nn0red 12511 . . . 4 (𝜑 → (𝐸[:]𝐼) ∈ ℝ)
105 rexmul 13238 . . . 4 (((𝐸[:]𝐼) ∈ ℝ ∧ (𝐼[:]𝐾) ∈ ℝ) → ((𝐸[:]𝐼) ·e (𝐼[:]𝐾)) = ((𝐸[:]𝐼) · (𝐼[:]𝐾)))
106104, 92, 105syl2anc 584 . . 3 (𝜑 → ((𝐸[:]𝐼) ·e (𝐼[:]𝐾)) = ((𝐸[:]𝐼) · (𝐼[:]𝐾)))
107103, 106eqtr2d 2766 . 2 (𝜑 → ((𝐸[:]𝐼) · (𝐼[:]𝐾)) = (𝐸[:]𝐾))
108 dvds0lem 16243 . 2 ((((𝐸[:]𝐼) ∈ ℤ ∧ (𝐼[:]𝐾) ∈ ℤ ∧ (𝐸[:]𝐾) ∈ ℤ) ∧ ((𝐸[:]𝐼) · (𝐼[:]𝐾)) = (𝐸[:]𝐾)) → (𝐼[:]𝐾) ∥ (𝐸[:]𝐾))
10913, 14, 99, 107, 108syl31anc 1375 1 (𝜑 → (𝐼[:]𝐾) ∥ (𝐸[:]𝐾))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  Vcvv 3450  cun 3915  wss 3917   class class class wbr 5110  cfv 6514  (class class class)co 7390  cr 11074   · cmul 11080  cle 11216  cn 12193  0cn0 12449  0*cxnn0 12522  cz 12536   ·e cxmu 13078  cdvds 16229  Basecbs 17186  s cress 17207  1rcur 20097  Ringcrg 20149  SubRingcsubrg 20485  RingSpancrgspn 20526  DivRingcdr 20645  Fieldcfield 20646  SubDRingcsdrg 20702   fldGen cfldgen 33267  /FldExtcfldext 33641  [:]cextdg 33643
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-reg 9552  ax-inf2 9601  ax-ac2 10423  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153  ax-addf 11154
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-iin 4961  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-of 7656  df-rpss 7702  df-om 7846  df-1st 7971  df-2nd 7972  df-supp 8143  df-tpos 8208  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-oadd 8441  df-er 8674  df-map 8804  df-ixp 8874  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-fsupp 9320  df-sup 9400  df-inf 9401  df-oi 9470  df-r1 9724  df-rank 9725  df-dju 9861  df-card 9899  df-acn 9902  df-ac 10076  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-xnn0 12523  df-z 12537  df-dec 12657  df-uz 12801  df-rp 12959  df-xneg 13079  df-xadd 13080  df-xmul 13081  df-icc 13320  df-fz 13476  df-fzo 13623  df-seq 13974  df-exp 14034  df-hash 14303  df-word 14486  df-lsw 14535  df-concat 14543  df-s1 14568  df-substr 14613  df-pfx 14643  df-s2 14821  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-clim 15461  df-sum 15660  df-dvds 16230  df-struct 17124  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-mulr 17241  df-starv 17242  df-sca 17243  df-vsca 17244  df-ip 17245  df-tset 17246  df-ple 17247  df-ocomp 17248  df-ds 17249  df-unif 17250  df-hom 17251  df-cco 17252  df-0g 17411  df-gsum 17412  df-prds 17417  df-pws 17419  df-mre 17554  df-mrc 17555  df-mri 17556  df-acs 17557  df-proset 18262  df-drs 18263  df-poset 18281  df-ipo 18494  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-mhm 18717  df-submnd 18718  df-grp 18875  df-minusg 18876  df-sbg 18877  df-mulg 19007  df-subg 19062  df-ghm 19152  df-cntz 19256  df-cntr 19257  df-lsm 19573  df-cmn 19719  df-abl 19720  df-mgp 20057  df-rng 20069  df-ur 20098  df-ring 20151  df-cring 20152  df-oppr 20253  df-dvdsr 20273  df-unit 20274  df-invr 20304  df-dvr 20317  df-nzr 20429  df-subrng 20462  df-subrg 20486  df-rgspn 20527  df-rlreg 20610  df-domn 20611  df-idom 20612  df-drng 20647  df-field 20648  df-sdrg 20703  df-lmod 20775  df-lss 20845  df-lsp 20885  df-lmhm 20936  df-lmim 20937  df-lbs 20989  df-lvec 21017  df-sra 21087  df-rgmod 21088  df-cnfld 21272  df-zring 21364  df-dsmm 21648  df-frlm 21663  df-uvc 21699  df-lindf 21722  df-linds 21723  df-assa 21769  df-ind 32781  df-fldgen 33268  df-dim 33602  df-fldext 33644  df-extdg 33645
This theorem is referenced by:  fldext2rspun  33684
  Copyright terms: Public domain W3C validator