Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  conjga Structured version   Visualization version   GIF version

Theorem conjga 33135
Description: Group conjugation induces a group action. (Contributed by Thierry Arnoux, 18-Nov-2025.)
Hypotheses
Ref Expression
cntrval2.1 𝐵 = (Base‘𝑀)
cntrval2.2 + = (+g𝑀)
cntrval2.3 = (-g𝑀)
cntrval2.4 = (𝑥𝐵, 𝑦𝐵 ↦ ((𝑥 + 𝑦) 𝑥))
Assertion
Ref Expression
conjga (𝑀 ∈ Grp → ∈ (𝑀 GrpAct 𝐵))
Distinct variable groups:   𝑥, ,𝑦   𝑥, + ,𝑦   𝑥, ,𝑦   𝑥,𝐵,𝑦   𝑥,𝑀,𝑦

Proof of Theorem conjga
Dummy variables 𝑢 𝑣 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 id 22 . 2 (𝑀 ∈ Grp → 𝑀 ∈ Grp)
2 cntrval2.1 . . . 4 𝐵 = (Base‘𝑀)
32fvexi 6879 . . 3 𝐵 ∈ V
43a1i 11 . 2 (𝑀 ∈ Grp → 𝐵 ∈ V)
5 cntrval2.3 . . . 4 = (-g𝑀)
61adantr 480 . . . 4 ((𝑀 ∈ Grp ∧ 𝑧 ∈ (𝐵 × 𝐵)) → 𝑀 ∈ Grp)
7 cntrval2.2 . . . . 5 + = (+g𝑀)
8 xp1st 8009 . . . . . 6 (𝑧 ∈ (𝐵 × 𝐵) → (1st𝑧) ∈ 𝐵)
98adantl 481 . . . . 5 ((𝑀 ∈ Grp ∧ 𝑧 ∈ (𝐵 × 𝐵)) → (1st𝑧) ∈ 𝐵)
10 xp2nd 8010 . . . . . 6 (𝑧 ∈ (𝐵 × 𝐵) → (2nd𝑧) ∈ 𝐵)
1110adantl 481 . . . . 5 ((𝑀 ∈ Grp ∧ 𝑧 ∈ (𝐵 × 𝐵)) → (2nd𝑧) ∈ 𝐵)
122, 7, 6, 9, 11grpcld 18885 . . . 4 ((𝑀 ∈ Grp ∧ 𝑧 ∈ (𝐵 × 𝐵)) → ((1st𝑧) + (2nd𝑧)) ∈ 𝐵)
132, 5, 6, 12, 9grpsubcld 32989 . . 3 ((𝑀 ∈ Grp ∧ 𝑧 ∈ (𝐵 × 𝐵)) → (((1st𝑧) + (2nd𝑧)) (1st𝑧)) ∈ 𝐵)
14 cntrval2.4 . . . 4 = (𝑥𝐵, 𝑦𝐵 ↦ ((𝑥 + 𝑦) 𝑥))
15 vex 3459 . . . . . . . 8 𝑥 ∈ V
16 vex 3459 . . . . . . . 8 𝑦 ∈ V
1715, 16op1std 7987 . . . . . . 7 (𝑧 = ⟨𝑥, 𝑦⟩ → (1st𝑧) = 𝑥)
1815, 16op2ndd 7988 . . . . . . 7 (𝑧 = ⟨𝑥, 𝑦⟩ → (2nd𝑧) = 𝑦)
1917, 18oveq12d 7412 . . . . . 6 (𝑧 = ⟨𝑥, 𝑦⟩ → ((1st𝑧) + (2nd𝑧)) = (𝑥 + 𝑦))
2019, 17oveq12d 7412 . . . . 5 (𝑧 = ⟨𝑥, 𝑦⟩ → (((1st𝑧) + (2nd𝑧)) (1st𝑧)) = ((𝑥 + 𝑦) 𝑥))
2120mpompt 7510 . . . 4 (𝑧 ∈ (𝐵 × 𝐵) ↦ (((1st𝑧) + (2nd𝑧)) (1st𝑧))) = (𝑥𝐵, 𝑦𝐵 ↦ ((𝑥 + 𝑦) 𝑥))
2214, 21eqtr4i 2756 . . 3 = (𝑧 ∈ (𝐵 × 𝐵) ↦ (((1st𝑧) + (2nd𝑧)) (1st𝑧)))
2313, 22fmptd 7093 . 2 (𝑀 ∈ Grp → :(𝐵 × 𝐵)⟶𝐵)
2414a1i 11 . . . . 5 ((𝑀 ∈ Grp ∧ 𝑧𝐵) → = (𝑥𝐵, 𝑦𝐵 ↦ ((𝑥 + 𝑦) 𝑥)))
25 simplr 768 . . . . . . . . 9 ((((𝑀 ∈ Grp ∧ 𝑧𝐵) ∧ 𝑥 = (0g𝑀)) ∧ 𝑦 = 𝑧) → 𝑥 = (0g𝑀))
26 simpr 484 . . . . . . . . 9 ((((𝑀 ∈ Grp ∧ 𝑧𝐵) ∧ 𝑥 = (0g𝑀)) ∧ 𝑦 = 𝑧) → 𝑦 = 𝑧)
2725, 26oveq12d 7412 . . . . . . . 8 ((((𝑀 ∈ Grp ∧ 𝑧𝐵) ∧ 𝑥 = (0g𝑀)) ∧ 𝑦 = 𝑧) → (𝑥 + 𝑦) = ((0g𝑀) + 𝑧))
2827, 25oveq12d 7412 . . . . . . 7 ((((𝑀 ∈ Grp ∧ 𝑧𝐵) ∧ 𝑥 = (0g𝑀)) ∧ 𝑦 = 𝑧) → ((𝑥 + 𝑦) 𝑥) = (((0g𝑀) + 𝑧) (0g𝑀)))
291ad3antrrr 730 . . . . . . . 8 ((((𝑀 ∈ Grp ∧ 𝑧𝐵) ∧ 𝑥 = (0g𝑀)) ∧ 𝑦 = 𝑧) → 𝑀 ∈ Grp)
30 eqid 2730 . . . . . . . . . . 11 (0g𝑀) = (0g𝑀)
312, 30grpidcl 18903 . . . . . . . . . 10 (𝑀 ∈ Grp → (0g𝑀) ∈ 𝐵)
3231ad3antrrr 730 . . . . . . . . 9 ((((𝑀 ∈ Grp ∧ 𝑧𝐵) ∧ 𝑥 = (0g𝑀)) ∧ 𝑦 = 𝑧) → (0g𝑀) ∈ 𝐵)
33 simpllr 775 . . . . . . . . 9 ((((𝑀 ∈ Grp ∧ 𝑧𝐵) ∧ 𝑥 = (0g𝑀)) ∧ 𝑦 = 𝑧) → 𝑧𝐵)
342, 7, 29, 32, 33grpcld 18885 . . . . . . . 8 ((((𝑀 ∈ Grp ∧ 𝑧𝐵) ∧ 𝑥 = (0g𝑀)) ∧ 𝑦 = 𝑧) → ((0g𝑀) + 𝑧) ∈ 𝐵)
352, 30, 5grpsubid1 18963 . . . . . . . 8 ((𝑀 ∈ Grp ∧ ((0g𝑀) + 𝑧) ∈ 𝐵) → (((0g𝑀) + 𝑧) (0g𝑀)) = ((0g𝑀) + 𝑧))
3629, 34, 35syl2anc 584 . . . . . . 7 ((((𝑀 ∈ Grp ∧ 𝑧𝐵) ∧ 𝑥 = (0g𝑀)) ∧ 𝑦 = 𝑧) → (((0g𝑀) + 𝑧) (0g𝑀)) = ((0g𝑀) + 𝑧))
372, 7, 30, 29, 33grplidd 18907 . . . . . . 7 ((((𝑀 ∈ Grp ∧ 𝑧𝐵) ∧ 𝑥 = (0g𝑀)) ∧ 𝑦 = 𝑧) → ((0g𝑀) + 𝑧) = 𝑧)
3828, 36, 373eqtrd 2769 . . . . . 6 ((((𝑀 ∈ Grp ∧ 𝑧𝐵) ∧ 𝑥 = (0g𝑀)) ∧ 𝑦 = 𝑧) → ((𝑥 + 𝑦) 𝑥) = 𝑧)
3938anasss 466 . . . . 5 (((𝑀 ∈ Grp ∧ 𝑧𝐵) ∧ (𝑥 = (0g𝑀) ∧ 𝑦 = 𝑧)) → ((𝑥 + 𝑦) 𝑥) = 𝑧)
4031adantr 480 . . . . 5 ((𝑀 ∈ Grp ∧ 𝑧𝐵) → (0g𝑀) ∈ 𝐵)
41 simpr 484 . . . . 5 ((𝑀 ∈ Grp ∧ 𝑧𝐵) → 𝑧𝐵)
4224, 39, 40, 41, 41ovmpod 7548 . . . 4 ((𝑀 ∈ Grp ∧ 𝑧𝐵) → ((0g𝑀) 𝑧) = 𝑧)
431ad3antrrr 730 . . . . . . . . . 10 ((((𝑀 ∈ Grp ∧ 𝑧𝐵) ∧ 𝑢𝐵) ∧ 𝑣𝐵) → 𝑀 ∈ Grp)
44 simplr 768 . . . . . . . . . 10 ((((𝑀 ∈ Grp ∧ 𝑧𝐵) ∧ 𝑢𝐵) ∧ 𝑣𝐵) → 𝑢𝐵)
45 simpr 484 . . . . . . . . . 10 ((((𝑀 ∈ Grp ∧ 𝑧𝐵) ∧ 𝑢𝐵) ∧ 𝑣𝐵) → 𝑣𝐵)
46 simpllr 775 . . . . . . . . . 10 ((((𝑀 ∈ Grp ∧ 𝑧𝐵) ∧ 𝑢𝐵) ∧ 𝑣𝐵) → 𝑧𝐵)
472, 7, 43, 44, 45, 46grpassd 18883 . . . . . . . . 9 ((((𝑀 ∈ Grp ∧ 𝑧𝐵) ∧ 𝑢𝐵) ∧ 𝑣𝐵) → ((𝑢 + 𝑣) + 𝑧) = (𝑢 + (𝑣 + 𝑧)))
4847oveq1d 7409 . . . . . . . 8 ((((𝑀 ∈ Grp ∧ 𝑧𝐵) ∧ 𝑢𝐵) ∧ 𝑣𝐵) → (((𝑢 + 𝑣) + 𝑧) (𝑢 + 𝑣)) = ((𝑢 + (𝑣 + 𝑧)) (𝑢 + 𝑣)))
492, 7, 43, 45, 46grpcld 18885 . . . . . . . . . 10 ((((𝑀 ∈ Grp ∧ 𝑧𝐵) ∧ 𝑢𝐵) ∧ 𝑣𝐵) → (𝑣 + 𝑧) ∈ 𝐵)
502, 7, 43, 44, 49grpcld 18885 . . . . . . . . 9 ((((𝑀 ∈ Grp ∧ 𝑧𝐵) ∧ 𝑢𝐵) ∧ 𝑣𝐵) → (𝑢 + (𝑣 + 𝑧)) ∈ 𝐵)
512, 7, 5grpsubsub4 18971 . . . . . . . . 9 ((𝑀 ∈ Grp ∧ ((𝑢 + (𝑣 + 𝑧)) ∈ 𝐵𝑣𝐵𝑢𝐵)) → (((𝑢 + (𝑣 + 𝑧)) 𝑣) 𝑢) = ((𝑢 + (𝑣 + 𝑧)) (𝑢 + 𝑣)))
5243, 50, 45, 44, 51syl13anc 1374 . . . . . . . 8 ((((𝑀 ∈ Grp ∧ 𝑧𝐵) ∧ 𝑢𝐵) ∧ 𝑣𝐵) → (((𝑢 + (𝑣 + 𝑧)) 𝑣) 𝑢) = ((𝑢 + (𝑣 + 𝑧)) (𝑢 + 𝑣)))
532, 7, 5grpaddsubass 18968 . . . . . . . . . 10 ((𝑀 ∈ Grp ∧ (𝑢𝐵 ∧ (𝑣 + 𝑧) ∈ 𝐵𝑣𝐵)) → ((𝑢 + (𝑣 + 𝑧)) 𝑣) = (𝑢 + ((𝑣 + 𝑧) 𝑣)))
5443, 44, 49, 45, 53syl13anc 1374 . . . . . . . . 9 ((((𝑀 ∈ Grp ∧ 𝑧𝐵) ∧ 𝑢𝐵) ∧ 𝑣𝐵) → ((𝑢 + (𝑣 + 𝑧)) 𝑣) = (𝑢 + ((𝑣 + 𝑧) 𝑣)))
5554oveq1d 7409 . . . . . . . 8 ((((𝑀 ∈ Grp ∧ 𝑧𝐵) ∧ 𝑢𝐵) ∧ 𝑣𝐵) → (((𝑢 + (𝑣 + 𝑧)) 𝑣) 𝑢) = ((𝑢 + ((𝑣 + 𝑧) 𝑣)) 𝑢))
5648, 52, 553eqtr2d 2771 . . . . . . 7 ((((𝑀 ∈ Grp ∧ 𝑧𝐵) ∧ 𝑢𝐵) ∧ 𝑣𝐵) → (((𝑢 + 𝑣) + 𝑧) (𝑢 + 𝑣)) = ((𝑢 + ((𝑣 + 𝑧) 𝑣)) 𝑢))
5714a1i 11 . . . . . . . 8 ((((𝑀 ∈ Grp ∧ 𝑧𝐵) ∧ 𝑢𝐵) ∧ 𝑣𝐵) → = (𝑥𝐵, 𝑦𝐵 ↦ ((𝑥 + 𝑦) 𝑥)))
58 simprl 770 . . . . . . . . . 10 (((((𝑀 ∈ Grp ∧ 𝑧𝐵) ∧ 𝑢𝐵) ∧ 𝑣𝐵) ∧ (𝑥 = (𝑢 + 𝑣) ∧ 𝑦 = 𝑧)) → 𝑥 = (𝑢 + 𝑣))
59 simprr 772 . . . . . . . . . 10 (((((𝑀 ∈ Grp ∧ 𝑧𝐵) ∧ 𝑢𝐵) ∧ 𝑣𝐵) ∧ (𝑥 = (𝑢 + 𝑣) ∧ 𝑦 = 𝑧)) → 𝑦 = 𝑧)
6058, 59oveq12d 7412 . . . . . . . . 9 (((((𝑀 ∈ Grp ∧ 𝑧𝐵) ∧ 𝑢𝐵) ∧ 𝑣𝐵) ∧ (𝑥 = (𝑢 + 𝑣) ∧ 𝑦 = 𝑧)) → (𝑥 + 𝑦) = ((𝑢 + 𝑣) + 𝑧))
6160, 58oveq12d 7412 . . . . . . . 8 (((((𝑀 ∈ Grp ∧ 𝑧𝐵) ∧ 𝑢𝐵) ∧ 𝑣𝐵) ∧ (𝑥 = (𝑢 + 𝑣) ∧ 𝑦 = 𝑧)) → ((𝑥 + 𝑦) 𝑥) = (((𝑢 + 𝑣) + 𝑧) (𝑢 + 𝑣)))
622, 7, 43, 44, 45grpcld 18885 . . . . . . . 8 ((((𝑀 ∈ Grp ∧ 𝑧𝐵) ∧ 𝑢𝐵) ∧ 𝑣𝐵) → (𝑢 + 𝑣) ∈ 𝐵)
63 ovexd 7429 . . . . . . . 8 ((((𝑀 ∈ Grp ∧ 𝑧𝐵) ∧ 𝑢𝐵) ∧ 𝑣𝐵) → (((𝑢 + 𝑣) + 𝑧) (𝑢 + 𝑣)) ∈ V)
6457, 61, 62, 46, 63ovmpod 7548 . . . . . . 7 ((((𝑀 ∈ Grp ∧ 𝑧𝐵) ∧ 𝑢𝐵) ∧ 𝑣𝐵) → ((𝑢 + 𝑣) 𝑧) = (((𝑢 + 𝑣) + 𝑧) (𝑢 + 𝑣)))
65 simprl 770 . . . . . . . . . 10 (((((𝑀 ∈ Grp ∧ 𝑧𝐵) ∧ 𝑢𝐵) ∧ 𝑣𝐵) ∧ (𝑥 = 𝑢𝑦 = (𝑣 𝑧))) → 𝑥 = 𝑢)
66 simprr 772 . . . . . . . . . . 11 (((((𝑀 ∈ Grp ∧ 𝑧𝐵) ∧ 𝑢𝐵) ∧ 𝑣𝐵) ∧ (𝑥 = 𝑢𝑦 = (𝑣 𝑧))) → 𝑦 = (𝑣 𝑧))
67 simprl 770 . . . . . . . . . . . . . . 15 (((((𝑀 ∈ Grp ∧ 𝑧𝐵) ∧ 𝑢𝐵) ∧ 𝑣𝐵) ∧ (𝑥 = 𝑣𝑦 = 𝑧)) → 𝑥 = 𝑣)
68 simprr 772 . . . . . . . . . . . . . . 15 (((((𝑀 ∈ Grp ∧ 𝑧𝐵) ∧ 𝑢𝐵) ∧ 𝑣𝐵) ∧ (𝑥 = 𝑣𝑦 = 𝑧)) → 𝑦 = 𝑧)
6967, 68oveq12d 7412 . . . . . . . . . . . . . 14 (((((𝑀 ∈ Grp ∧ 𝑧𝐵) ∧ 𝑢𝐵) ∧ 𝑣𝐵) ∧ (𝑥 = 𝑣𝑦 = 𝑧)) → (𝑥 + 𝑦) = (𝑣 + 𝑧))
7069, 67oveq12d 7412 . . . . . . . . . . . . 13 (((((𝑀 ∈ Grp ∧ 𝑧𝐵) ∧ 𝑢𝐵) ∧ 𝑣𝐵) ∧ (𝑥 = 𝑣𝑦 = 𝑧)) → ((𝑥 + 𝑦) 𝑥) = ((𝑣 + 𝑧) 𝑣))
71 ovexd 7429 . . . . . . . . . . . . 13 ((((𝑀 ∈ Grp ∧ 𝑧𝐵) ∧ 𝑢𝐵) ∧ 𝑣𝐵) → ((𝑣 + 𝑧) 𝑣) ∈ V)
7257, 70, 45, 46, 71ovmpod 7548 . . . . . . . . . . . 12 ((((𝑀 ∈ Grp ∧ 𝑧𝐵) ∧ 𝑢𝐵) ∧ 𝑣𝐵) → (𝑣 𝑧) = ((𝑣 + 𝑧) 𝑣))
7372adantr 480 . . . . . . . . . . 11 (((((𝑀 ∈ Grp ∧ 𝑧𝐵) ∧ 𝑢𝐵) ∧ 𝑣𝐵) ∧ (𝑥 = 𝑢𝑦 = (𝑣 𝑧))) → (𝑣 𝑧) = ((𝑣 + 𝑧) 𝑣))
7466, 73eqtrd 2765 . . . . . . . . . 10 (((((𝑀 ∈ Grp ∧ 𝑧𝐵) ∧ 𝑢𝐵) ∧ 𝑣𝐵) ∧ (𝑥 = 𝑢𝑦 = (𝑣 𝑧))) → 𝑦 = ((𝑣 + 𝑧) 𝑣))
7565, 74oveq12d 7412 . . . . . . . . 9 (((((𝑀 ∈ Grp ∧ 𝑧𝐵) ∧ 𝑢𝐵) ∧ 𝑣𝐵) ∧ (𝑥 = 𝑢𝑦 = (𝑣 𝑧))) → (𝑥 + 𝑦) = (𝑢 + ((𝑣 + 𝑧) 𝑣)))
7675, 65oveq12d 7412 . . . . . . . 8 (((((𝑀 ∈ Grp ∧ 𝑧𝐵) ∧ 𝑢𝐵) ∧ 𝑣𝐵) ∧ (𝑥 = 𝑢𝑦 = (𝑣 𝑧))) → ((𝑥 + 𝑦) 𝑥) = ((𝑢 + ((𝑣 + 𝑧) 𝑣)) 𝑢))
7723ad3antrrr 730 . . . . . . . . 9 ((((𝑀 ∈ Grp ∧ 𝑧𝐵) ∧ 𝑢𝐵) ∧ 𝑣𝐵) → :(𝐵 × 𝐵)⟶𝐵)
7877, 45, 46fovcdmd 7568 . . . . . . . 8 ((((𝑀 ∈ Grp ∧ 𝑧𝐵) ∧ 𝑢𝐵) ∧ 𝑣𝐵) → (𝑣 𝑧) ∈ 𝐵)
79 ovexd 7429 . . . . . . . 8 ((((𝑀 ∈ Grp ∧ 𝑧𝐵) ∧ 𝑢𝐵) ∧ 𝑣𝐵) → ((𝑢 + ((𝑣 + 𝑧) 𝑣)) 𝑢) ∈ V)
8057, 76, 44, 78, 79ovmpod 7548 . . . . . . 7 ((((𝑀 ∈ Grp ∧ 𝑧𝐵) ∧ 𝑢𝐵) ∧ 𝑣𝐵) → (𝑢 (𝑣 𝑧)) = ((𝑢 + ((𝑣 + 𝑧) 𝑣)) 𝑢))
8156, 64, 803eqtr4d 2775 . . . . . 6 ((((𝑀 ∈ Grp ∧ 𝑧𝐵) ∧ 𝑢𝐵) ∧ 𝑣𝐵) → ((𝑢 + 𝑣) 𝑧) = (𝑢 (𝑣 𝑧)))
8281anasss 466 . . . . 5 (((𝑀 ∈ Grp ∧ 𝑧𝐵) ∧ (𝑢𝐵𝑣𝐵)) → ((𝑢 + 𝑣) 𝑧) = (𝑢 (𝑣 𝑧)))
8382ralrimivva 3182 . . . 4 ((𝑀 ∈ Grp ∧ 𝑧𝐵) → ∀𝑢𝐵𝑣𝐵 ((𝑢 + 𝑣) 𝑧) = (𝑢 (𝑣 𝑧)))
8442, 83jca 511 . . 3 ((𝑀 ∈ Grp ∧ 𝑧𝐵) → (((0g𝑀) 𝑧) = 𝑧 ∧ ∀𝑢𝐵𝑣𝐵 ((𝑢 + 𝑣) 𝑧) = (𝑢 (𝑣 𝑧))))
8584ralrimiva 3127 . 2 (𝑀 ∈ Grp → ∀𝑧𝐵 (((0g𝑀) 𝑧) = 𝑧 ∧ ∀𝑢𝐵𝑣𝐵 ((𝑢 + 𝑣) 𝑧) = (𝑢 (𝑣 𝑧))))
862, 7, 30isga 19229 . 2 ( ∈ (𝑀 GrpAct 𝐵) ↔ ((𝑀 ∈ Grp ∧ 𝐵 ∈ V) ∧ ( :(𝐵 × 𝐵)⟶𝐵 ∧ ∀𝑧𝐵 (((0g𝑀) 𝑧) = 𝑧 ∧ ∀𝑢𝐵𝑣𝐵 ((𝑢 + 𝑣) 𝑧) = (𝑢 (𝑣 𝑧))))))
871, 4, 23, 85, 86syl22anbrc 32391 1 (𝑀 ∈ Grp → ∈ (𝑀 GrpAct 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3046  Vcvv 3455  cop 4603  cmpt 5196   × cxp 5644  wf 6515  cfv 6519  (class class class)co 7394  cmpo 7396  1st c1st 7975  2nd c2nd 7976  Basecbs 17185  +gcplusg 17226  0gc0g 17408  Grpcgrp 18871  -gcsg 18873   GrpAct cga 19227
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5259  ax-nul 5269  ax-pow 5328  ax-pr 5395  ax-un 7718
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2880  df-ne 2928  df-ral 3047  df-rex 3056  df-rmo 3357  df-reu 3358  df-rab 3412  df-v 3457  df-sbc 3762  df-csb 3871  df-dif 3925  df-un 3927  df-in 3929  df-ss 3939  df-nul 4305  df-if 4497  df-pw 4573  df-sn 4598  df-pr 4600  df-op 4604  df-uni 4880  df-iun 4965  df-br 5116  df-opab 5178  df-mpt 5197  df-id 5541  df-xp 5652  df-rel 5653  df-cnv 5654  df-co 5655  df-dm 5656  df-rn 5657  df-res 5658  df-ima 5659  df-iota 6472  df-fun 6521  df-fn 6522  df-f 6523  df-fv 6527  df-riota 7351  df-ov 7397  df-oprab 7398  df-mpo 7399  df-1st 7977  df-2nd 7978  df-map 8805  df-0g 17410  df-mgm 18573  df-sgrp 18652  df-mnd 18668  df-grp 18874  df-minusg 18875  df-sbg 18876  df-ga 19228
This theorem is referenced by:  cntrval2  33136
  Copyright terms: Public domain W3C validator