| Step | Hyp | Ref
| Expression |
| 1 | | id 22 |
. 2
⊢ (𝑀 ∈ Grp → 𝑀 ∈ Grp) |
| 2 | | cntrval2.1 |
. . . 4
⊢ 𝐵 = (Base‘𝑀) |
| 3 | 2 | fvexi 6879 |
. . 3
⊢ 𝐵 ∈ V |
| 4 | 3 | a1i 11 |
. 2
⊢ (𝑀 ∈ Grp → 𝐵 ∈ V) |
| 5 | | cntrval2.3 |
. . . 4
⊢ − =
(-g‘𝑀) |
| 6 | 1 | adantr 480 |
. . . 4
⊢ ((𝑀 ∈ Grp ∧ 𝑧 ∈ (𝐵 × 𝐵)) → 𝑀 ∈ Grp) |
| 7 | | cntrval2.2 |
. . . . 5
⊢ + =
(+g‘𝑀) |
| 8 | | xp1st 8009 |
. . . . . 6
⊢ (𝑧 ∈ (𝐵 × 𝐵) → (1st ‘𝑧) ∈ 𝐵) |
| 9 | 8 | adantl 481 |
. . . . 5
⊢ ((𝑀 ∈ Grp ∧ 𝑧 ∈ (𝐵 × 𝐵)) → (1st ‘𝑧) ∈ 𝐵) |
| 10 | | xp2nd 8010 |
. . . . . 6
⊢ (𝑧 ∈ (𝐵 × 𝐵) → (2nd ‘𝑧) ∈ 𝐵) |
| 11 | 10 | adantl 481 |
. . . . 5
⊢ ((𝑀 ∈ Grp ∧ 𝑧 ∈ (𝐵 × 𝐵)) → (2nd ‘𝑧) ∈ 𝐵) |
| 12 | 2, 7, 6, 9, 11 | grpcld 18885 |
. . . 4
⊢ ((𝑀 ∈ Grp ∧ 𝑧 ∈ (𝐵 × 𝐵)) → ((1st ‘𝑧) + (2nd
‘𝑧)) ∈ 𝐵) |
| 13 | 2, 5, 6, 12, 9 | grpsubcld 32989 |
. . 3
⊢ ((𝑀 ∈ Grp ∧ 𝑧 ∈ (𝐵 × 𝐵)) → (((1st ‘𝑧) + (2nd
‘𝑧)) −
(1st ‘𝑧))
∈ 𝐵) |
| 14 | | cntrval2.4 |
. . . 4
⊢ ⊕ =
(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ((𝑥 + 𝑦) − 𝑥)) |
| 15 | | vex 3459 |
. . . . . . . 8
⊢ 𝑥 ∈ V |
| 16 | | vex 3459 |
. . . . . . . 8
⊢ 𝑦 ∈ V |
| 17 | 15, 16 | op1std 7987 |
. . . . . . 7
⊢ (𝑧 = 〈𝑥, 𝑦〉 → (1st ‘𝑧) = 𝑥) |
| 18 | 15, 16 | op2ndd 7988 |
. . . . . . 7
⊢ (𝑧 = 〈𝑥, 𝑦〉 → (2nd ‘𝑧) = 𝑦) |
| 19 | 17, 18 | oveq12d 7412 |
. . . . . 6
⊢ (𝑧 = 〈𝑥, 𝑦〉 → ((1st ‘𝑧) + (2nd
‘𝑧)) = (𝑥 + 𝑦)) |
| 20 | 19, 17 | oveq12d 7412 |
. . . . 5
⊢ (𝑧 = 〈𝑥, 𝑦〉 → (((1st ‘𝑧) + (2nd
‘𝑧)) −
(1st ‘𝑧))
= ((𝑥 + 𝑦) − 𝑥)) |
| 21 | 20 | mpompt 7510 |
. . . 4
⊢ (𝑧 ∈ (𝐵 × 𝐵) ↦ (((1st ‘𝑧) + (2nd
‘𝑧)) −
(1st ‘𝑧)))
= (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ((𝑥 + 𝑦) − 𝑥)) |
| 22 | 14, 21 | eqtr4i 2756 |
. . 3
⊢ ⊕ =
(𝑧 ∈ (𝐵 × 𝐵) ↦ (((1st ‘𝑧) + (2nd
‘𝑧)) −
(1st ‘𝑧))) |
| 23 | 13, 22 | fmptd 7093 |
. 2
⊢ (𝑀 ∈ Grp → ⊕
:(𝐵 × 𝐵)⟶𝐵) |
| 24 | 14 | a1i 11 |
. . . . 5
⊢ ((𝑀 ∈ Grp ∧ 𝑧 ∈ 𝐵) → ⊕ = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ((𝑥 + 𝑦) − 𝑥))) |
| 25 | | simplr 768 |
. . . . . . . . 9
⊢ ((((𝑀 ∈ Grp ∧ 𝑧 ∈ 𝐵) ∧ 𝑥 = (0g‘𝑀)) ∧ 𝑦 = 𝑧) → 𝑥 = (0g‘𝑀)) |
| 26 | | simpr 484 |
. . . . . . . . 9
⊢ ((((𝑀 ∈ Grp ∧ 𝑧 ∈ 𝐵) ∧ 𝑥 = (0g‘𝑀)) ∧ 𝑦 = 𝑧) → 𝑦 = 𝑧) |
| 27 | 25, 26 | oveq12d 7412 |
. . . . . . . 8
⊢ ((((𝑀 ∈ Grp ∧ 𝑧 ∈ 𝐵) ∧ 𝑥 = (0g‘𝑀)) ∧ 𝑦 = 𝑧) → (𝑥 + 𝑦) = ((0g‘𝑀) + 𝑧)) |
| 28 | 27, 25 | oveq12d 7412 |
. . . . . . 7
⊢ ((((𝑀 ∈ Grp ∧ 𝑧 ∈ 𝐵) ∧ 𝑥 = (0g‘𝑀)) ∧ 𝑦 = 𝑧) → ((𝑥 + 𝑦) − 𝑥) = (((0g‘𝑀) + 𝑧) −
(0g‘𝑀))) |
| 29 | 1 | ad3antrrr 730 |
. . . . . . . 8
⊢ ((((𝑀 ∈ Grp ∧ 𝑧 ∈ 𝐵) ∧ 𝑥 = (0g‘𝑀)) ∧ 𝑦 = 𝑧) → 𝑀 ∈ Grp) |
| 30 | | eqid 2730 |
. . . . . . . . . . 11
⊢
(0g‘𝑀) = (0g‘𝑀) |
| 31 | 2, 30 | grpidcl 18903 |
. . . . . . . . . 10
⊢ (𝑀 ∈ Grp →
(0g‘𝑀)
∈ 𝐵) |
| 32 | 31 | ad3antrrr 730 |
. . . . . . . . 9
⊢ ((((𝑀 ∈ Grp ∧ 𝑧 ∈ 𝐵) ∧ 𝑥 = (0g‘𝑀)) ∧ 𝑦 = 𝑧) → (0g‘𝑀) ∈ 𝐵) |
| 33 | | simpllr 775 |
. . . . . . . . 9
⊢ ((((𝑀 ∈ Grp ∧ 𝑧 ∈ 𝐵) ∧ 𝑥 = (0g‘𝑀)) ∧ 𝑦 = 𝑧) → 𝑧 ∈ 𝐵) |
| 34 | 2, 7, 29, 32, 33 | grpcld 18885 |
. . . . . . . 8
⊢ ((((𝑀 ∈ Grp ∧ 𝑧 ∈ 𝐵) ∧ 𝑥 = (0g‘𝑀)) ∧ 𝑦 = 𝑧) → ((0g‘𝑀) + 𝑧) ∈ 𝐵) |
| 35 | 2, 30, 5 | grpsubid1 18963 |
. . . . . . . 8
⊢ ((𝑀 ∈ Grp ∧
((0g‘𝑀)
+ 𝑧) ∈ 𝐵) → (((0g‘𝑀) + 𝑧) −
(0g‘𝑀)) =
((0g‘𝑀)
+ 𝑧)) |
| 36 | 29, 34, 35 | syl2anc 584 |
. . . . . . 7
⊢ ((((𝑀 ∈ Grp ∧ 𝑧 ∈ 𝐵) ∧ 𝑥 = (0g‘𝑀)) ∧ 𝑦 = 𝑧) → (((0g‘𝑀) + 𝑧) −
(0g‘𝑀)) =
((0g‘𝑀)
+ 𝑧)) |
| 37 | 2, 7, 30, 29, 33 | grplidd 18907 |
. . . . . . 7
⊢ ((((𝑀 ∈ Grp ∧ 𝑧 ∈ 𝐵) ∧ 𝑥 = (0g‘𝑀)) ∧ 𝑦 = 𝑧) → ((0g‘𝑀) + 𝑧) = 𝑧) |
| 38 | 28, 36, 37 | 3eqtrd 2769 |
. . . . . 6
⊢ ((((𝑀 ∈ Grp ∧ 𝑧 ∈ 𝐵) ∧ 𝑥 = (0g‘𝑀)) ∧ 𝑦 = 𝑧) → ((𝑥 + 𝑦) − 𝑥) = 𝑧) |
| 39 | 38 | anasss 466 |
. . . . 5
⊢ (((𝑀 ∈ Grp ∧ 𝑧 ∈ 𝐵) ∧ (𝑥 = (0g‘𝑀) ∧ 𝑦 = 𝑧)) → ((𝑥 + 𝑦) − 𝑥) = 𝑧) |
| 40 | 31 | adantr 480 |
. . . . 5
⊢ ((𝑀 ∈ Grp ∧ 𝑧 ∈ 𝐵) → (0g‘𝑀) ∈ 𝐵) |
| 41 | | simpr 484 |
. . . . 5
⊢ ((𝑀 ∈ Grp ∧ 𝑧 ∈ 𝐵) → 𝑧 ∈ 𝐵) |
| 42 | 24, 39, 40, 41, 41 | ovmpod 7548 |
. . . 4
⊢ ((𝑀 ∈ Grp ∧ 𝑧 ∈ 𝐵) → ((0g‘𝑀) ⊕ 𝑧) = 𝑧) |
| 43 | 1 | ad3antrrr 730 |
. . . . . . . . . 10
⊢ ((((𝑀 ∈ Grp ∧ 𝑧 ∈ 𝐵) ∧ 𝑢 ∈ 𝐵) ∧ 𝑣 ∈ 𝐵) → 𝑀 ∈ Grp) |
| 44 | | simplr 768 |
. . . . . . . . . 10
⊢ ((((𝑀 ∈ Grp ∧ 𝑧 ∈ 𝐵) ∧ 𝑢 ∈ 𝐵) ∧ 𝑣 ∈ 𝐵) → 𝑢 ∈ 𝐵) |
| 45 | | simpr 484 |
. . . . . . . . . 10
⊢ ((((𝑀 ∈ Grp ∧ 𝑧 ∈ 𝐵) ∧ 𝑢 ∈ 𝐵) ∧ 𝑣 ∈ 𝐵) → 𝑣 ∈ 𝐵) |
| 46 | | simpllr 775 |
. . . . . . . . . 10
⊢ ((((𝑀 ∈ Grp ∧ 𝑧 ∈ 𝐵) ∧ 𝑢 ∈ 𝐵) ∧ 𝑣 ∈ 𝐵) → 𝑧 ∈ 𝐵) |
| 47 | 2, 7, 43, 44, 45, 46 | grpassd 18883 |
. . . . . . . . 9
⊢ ((((𝑀 ∈ Grp ∧ 𝑧 ∈ 𝐵) ∧ 𝑢 ∈ 𝐵) ∧ 𝑣 ∈ 𝐵) → ((𝑢 + 𝑣) + 𝑧) = (𝑢 + (𝑣 + 𝑧))) |
| 48 | 47 | oveq1d 7409 |
. . . . . . . 8
⊢ ((((𝑀 ∈ Grp ∧ 𝑧 ∈ 𝐵) ∧ 𝑢 ∈ 𝐵) ∧ 𝑣 ∈ 𝐵) → (((𝑢 + 𝑣) + 𝑧) − (𝑢 + 𝑣)) = ((𝑢 + (𝑣 + 𝑧)) − (𝑢 + 𝑣))) |
| 49 | 2, 7, 43, 45, 46 | grpcld 18885 |
. . . . . . . . . 10
⊢ ((((𝑀 ∈ Grp ∧ 𝑧 ∈ 𝐵) ∧ 𝑢 ∈ 𝐵) ∧ 𝑣 ∈ 𝐵) → (𝑣 + 𝑧) ∈ 𝐵) |
| 50 | 2, 7, 43, 44, 49 | grpcld 18885 |
. . . . . . . . 9
⊢ ((((𝑀 ∈ Grp ∧ 𝑧 ∈ 𝐵) ∧ 𝑢 ∈ 𝐵) ∧ 𝑣 ∈ 𝐵) → (𝑢 + (𝑣 + 𝑧)) ∈ 𝐵) |
| 51 | 2, 7, 5 | grpsubsub4 18971 |
. . . . . . . . 9
⊢ ((𝑀 ∈ Grp ∧ ((𝑢 + (𝑣 + 𝑧)) ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ∧ 𝑢 ∈ 𝐵)) → (((𝑢 + (𝑣 + 𝑧)) − 𝑣) − 𝑢) = ((𝑢 + (𝑣 + 𝑧)) − (𝑢 + 𝑣))) |
| 52 | 43, 50, 45, 44, 51 | syl13anc 1374 |
. . . . . . . 8
⊢ ((((𝑀 ∈ Grp ∧ 𝑧 ∈ 𝐵) ∧ 𝑢 ∈ 𝐵) ∧ 𝑣 ∈ 𝐵) → (((𝑢 + (𝑣 + 𝑧)) − 𝑣) − 𝑢) = ((𝑢 + (𝑣 + 𝑧)) − (𝑢 + 𝑣))) |
| 53 | 2, 7, 5 | grpaddsubass 18968 |
. . . . . . . . . 10
⊢ ((𝑀 ∈ Grp ∧ (𝑢 ∈ 𝐵 ∧ (𝑣 + 𝑧) ∈ 𝐵 ∧ 𝑣 ∈ 𝐵)) → ((𝑢 + (𝑣 + 𝑧)) − 𝑣) = (𝑢 + ((𝑣 + 𝑧) − 𝑣))) |
| 54 | 43, 44, 49, 45, 53 | syl13anc 1374 |
. . . . . . . . 9
⊢ ((((𝑀 ∈ Grp ∧ 𝑧 ∈ 𝐵) ∧ 𝑢 ∈ 𝐵) ∧ 𝑣 ∈ 𝐵) → ((𝑢 + (𝑣 + 𝑧)) − 𝑣) = (𝑢 + ((𝑣 + 𝑧) − 𝑣))) |
| 55 | 54 | oveq1d 7409 |
. . . . . . . 8
⊢ ((((𝑀 ∈ Grp ∧ 𝑧 ∈ 𝐵) ∧ 𝑢 ∈ 𝐵) ∧ 𝑣 ∈ 𝐵) → (((𝑢 + (𝑣 + 𝑧)) − 𝑣) − 𝑢) = ((𝑢 + ((𝑣 + 𝑧) − 𝑣)) − 𝑢)) |
| 56 | 48, 52, 55 | 3eqtr2d 2771 |
. . . . . . 7
⊢ ((((𝑀 ∈ Grp ∧ 𝑧 ∈ 𝐵) ∧ 𝑢 ∈ 𝐵) ∧ 𝑣 ∈ 𝐵) → (((𝑢 + 𝑣) + 𝑧) − (𝑢 + 𝑣)) = ((𝑢 + ((𝑣 + 𝑧) − 𝑣)) − 𝑢)) |
| 57 | 14 | a1i 11 |
. . . . . . . 8
⊢ ((((𝑀 ∈ Grp ∧ 𝑧 ∈ 𝐵) ∧ 𝑢 ∈ 𝐵) ∧ 𝑣 ∈ 𝐵) → ⊕ = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ((𝑥 + 𝑦) − 𝑥))) |
| 58 | | simprl 770 |
. . . . . . . . . 10
⊢
(((((𝑀 ∈ Grp
∧ 𝑧 ∈ 𝐵) ∧ 𝑢 ∈ 𝐵) ∧ 𝑣 ∈ 𝐵) ∧ (𝑥 = (𝑢 + 𝑣) ∧ 𝑦 = 𝑧)) → 𝑥 = (𝑢 + 𝑣)) |
| 59 | | simprr 772 |
. . . . . . . . . 10
⊢
(((((𝑀 ∈ Grp
∧ 𝑧 ∈ 𝐵) ∧ 𝑢 ∈ 𝐵) ∧ 𝑣 ∈ 𝐵) ∧ (𝑥 = (𝑢 + 𝑣) ∧ 𝑦 = 𝑧)) → 𝑦 = 𝑧) |
| 60 | 58, 59 | oveq12d 7412 |
. . . . . . . . 9
⊢
(((((𝑀 ∈ Grp
∧ 𝑧 ∈ 𝐵) ∧ 𝑢 ∈ 𝐵) ∧ 𝑣 ∈ 𝐵) ∧ (𝑥 = (𝑢 + 𝑣) ∧ 𝑦 = 𝑧)) → (𝑥 + 𝑦) = ((𝑢 + 𝑣) + 𝑧)) |
| 61 | 60, 58 | oveq12d 7412 |
. . . . . . . 8
⊢
(((((𝑀 ∈ Grp
∧ 𝑧 ∈ 𝐵) ∧ 𝑢 ∈ 𝐵) ∧ 𝑣 ∈ 𝐵) ∧ (𝑥 = (𝑢 + 𝑣) ∧ 𝑦 = 𝑧)) → ((𝑥 + 𝑦) − 𝑥) = (((𝑢 + 𝑣) + 𝑧) − (𝑢 + 𝑣))) |
| 62 | 2, 7, 43, 44, 45 | grpcld 18885 |
. . . . . . . 8
⊢ ((((𝑀 ∈ Grp ∧ 𝑧 ∈ 𝐵) ∧ 𝑢 ∈ 𝐵) ∧ 𝑣 ∈ 𝐵) → (𝑢 + 𝑣) ∈ 𝐵) |
| 63 | | ovexd 7429 |
. . . . . . . 8
⊢ ((((𝑀 ∈ Grp ∧ 𝑧 ∈ 𝐵) ∧ 𝑢 ∈ 𝐵) ∧ 𝑣 ∈ 𝐵) → (((𝑢 + 𝑣) + 𝑧) − (𝑢 + 𝑣)) ∈ V) |
| 64 | 57, 61, 62, 46, 63 | ovmpod 7548 |
. . . . . . 7
⊢ ((((𝑀 ∈ Grp ∧ 𝑧 ∈ 𝐵) ∧ 𝑢 ∈ 𝐵) ∧ 𝑣 ∈ 𝐵) → ((𝑢 + 𝑣) ⊕ 𝑧) = (((𝑢 + 𝑣) + 𝑧) − (𝑢 + 𝑣))) |
| 65 | | simprl 770 |
. . . . . . . . . 10
⊢
(((((𝑀 ∈ Grp
∧ 𝑧 ∈ 𝐵) ∧ 𝑢 ∈ 𝐵) ∧ 𝑣 ∈ 𝐵) ∧ (𝑥 = 𝑢 ∧ 𝑦 = (𝑣 ⊕ 𝑧))) → 𝑥 = 𝑢) |
| 66 | | simprr 772 |
. . . . . . . . . . 11
⊢
(((((𝑀 ∈ Grp
∧ 𝑧 ∈ 𝐵) ∧ 𝑢 ∈ 𝐵) ∧ 𝑣 ∈ 𝐵) ∧ (𝑥 = 𝑢 ∧ 𝑦 = (𝑣 ⊕ 𝑧))) → 𝑦 = (𝑣 ⊕ 𝑧)) |
| 67 | | simprl 770 |
. . . . . . . . . . . . . . 15
⊢
(((((𝑀 ∈ Grp
∧ 𝑧 ∈ 𝐵) ∧ 𝑢 ∈ 𝐵) ∧ 𝑣 ∈ 𝐵) ∧ (𝑥 = 𝑣 ∧ 𝑦 = 𝑧)) → 𝑥 = 𝑣) |
| 68 | | simprr 772 |
. . . . . . . . . . . . . . 15
⊢
(((((𝑀 ∈ Grp
∧ 𝑧 ∈ 𝐵) ∧ 𝑢 ∈ 𝐵) ∧ 𝑣 ∈ 𝐵) ∧ (𝑥 = 𝑣 ∧ 𝑦 = 𝑧)) → 𝑦 = 𝑧) |
| 69 | 67, 68 | oveq12d 7412 |
. . . . . . . . . . . . . 14
⊢
(((((𝑀 ∈ Grp
∧ 𝑧 ∈ 𝐵) ∧ 𝑢 ∈ 𝐵) ∧ 𝑣 ∈ 𝐵) ∧ (𝑥 = 𝑣 ∧ 𝑦 = 𝑧)) → (𝑥 + 𝑦) = (𝑣 + 𝑧)) |
| 70 | 69, 67 | oveq12d 7412 |
. . . . . . . . . . . . 13
⊢
(((((𝑀 ∈ Grp
∧ 𝑧 ∈ 𝐵) ∧ 𝑢 ∈ 𝐵) ∧ 𝑣 ∈ 𝐵) ∧ (𝑥 = 𝑣 ∧ 𝑦 = 𝑧)) → ((𝑥 + 𝑦) − 𝑥) = ((𝑣 + 𝑧) − 𝑣)) |
| 71 | | ovexd 7429 |
. . . . . . . . . . . . 13
⊢ ((((𝑀 ∈ Grp ∧ 𝑧 ∈ 𝐵) ∧ 𝑢 ∈ 𝐵) ∧ 𝑣 ∈ 𝐵) → ((𝑣 + 𝑧) − 𝑣) ∈ V) |
| 72 | 57, 70, 45, 46, 71 | ovmpod 7548 |
. . . . . . . . . . . 12
⊢ ((((𝑀 ∈ Grp ∧ 𝑧 ∈ 𝐵) ∧ 𝑢 ∈ 𝐵) ∧ 𝑣 ∈ 𝐵) → (𝑣 ⊕ 𝑧) = ((𝑣 + 𝑧) − 𝑣)) |
| 73 | 72 | adantr 480 |
. . . . . . . . . . 11
⊢
(((((𝑀 ∈ Grp
∧ 𝑧 ∈ 𝐵) ∧ 𝑢 ∈ 𝐵) ∧ 𝑣 ∈ 𝐵) ∧ (𝑥 = 𝑢 ∧ 𝑦 = (𝑣 ⊕ 𝑧))) → (𝑣 ⊕ 𝑧) = ((𝑣 + 𝑧) − 𝑣)) |
| 74 | 66, 73 | eqtrd 2765 |
. . . . . . . . . 10
⊢
(((((𝑀 ∈ Grp
∧ 𝑧 ∈ 𝐵) ∧ 𝑢 ∈ 𝐵) ∧ 𝑣 ∈ 𝐵) ∧ (𝑥 = 𝑢 ∧ 𝑦 = (𝑣 ⊕ 𝑧))) → 𝑦 = ((𝑣 + 𝑧) − 𝑣)) |
| 75 | 65, 74 | oveq12d 7412 |
. . . . . . . . 9
⊢
(((((𝑀 ∈ Grp
∧ 𝑧 ∈ 𝐵) ∧ 𝑢 ∈ 𝐵) ∧ 𝑣 ∈ 𝐵) ∧ (𝑥 = 𝑢 ∧ 𝑦 = (𝑣 ⊕ 𝑧))) → (𝑥 + 𝑦) = (𝑢 + ((𝑣 + 𝑧) − 𝑣))) |
| 76 | 75, 65 | oveq12d 7412 |
. . . . . . . 8
⊢
(((((𝑀 ∈ Grp
∧ 𝑧 ∈ 𝐵) ∧ 𝑢 ∈ 𝐵) ∧ 𝑣 ∈ 𝐵) ∧ (𝑥 = 𝑢 ∧ 𝑦 = (𝑣 ⊕ 𝑧))) → ((𝑥 + 𝑦) − 𝑥) = ((𝑢 + ((𝑣 + 𝑧) − 𝑣)) − 𝑢)) |
| 77 | 23 | ad3antrrr 730 |
. . . . . . . . 9
⊢ ((((𝑀 ∈ Grp ∧ 𝑧 ∈ 𝐵) ∧ 𝑢 ∈ 𝐵) ∧ 𝑣 ∈ 𝐵) → ⊕ :(𝐵 × 𝐵)⟶𝐵) |
| 78 | 77, 45, 46 | fovcdmd 7568 |
. . . . . . . 8
⊢ ((((𝑀 ∈ Grp ∧ 𝑧 ∈ 𝐵) ∧ 𝑢 ∈ 𝐵) ∧ 𝑣 ∈ 𝐵) → (𝑣 ⊕ 𝑧) ∈ 𝐵) |
| 79 | | ovexd 7429 |
. . . . . . . 8
⊢ ((((𝑀 ∈ Grp ∧ 𝑧 ∈ 𝐵) ∧ 𝑢 ∈ 𝐵) ∧ 𝑣 ∈ 𝐵) → ((𝑢 + ((𝑣 + 𝑧) − 𝑣)) − 𝑢) ∈ V) |
| 80 | 57, 76, 44, 78, 79 | ovmpod 7548 |
. . . . . . 7
⊢ ((((𝑀 ∈ Grp ∧ 𝑧 ∈ 𝐵) ∧ 𝑢 ∈ 𝐵) ∧ 𝑣 ∈ 𝐵) → (𝑢 ⊕ (𝑣 ⊕ 𝑧)) = ((𝑢 + ((𝑣 + 𝑧) − 𝑣)) − 𝑢)) |
| 81 | 56, 64, 80 | 3eqtr4d 2775 |
. . . . . 6
⊢ ((((𝑀 ∈ Grp ∧ 𝑧 ∈ 𝐵) ∧ 𝑢 ∈ 𝐵) ∧ 𝑣 ∈ 𝐵) → ((𝑢 + 𝑣) ⊕ 𝑧) = (𝑢 ⊕ (𝑣 ⊕ 𝑧))) |
| 82 | 81 | anasss 466 |
. . . . 5
⊢ (((𝑀 ∈ Grp ∧ 𝑧 ∈ 𝐵) ∧ (𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵)) → ((𝑢 + 𝑣) ⊕ 𝑧) = (𝑢 ⊕ (𝑣 ⊕ 𝑧))) |
| 83 | 82 | ralrimivva 3182 |
. . . 4
⊢ ((𝑀 ∈ Grp ∧ 𝑧 ∈ 𝐵) → ∀𝑢 ∈ 𝐵 ∀𝑣 ∈ 𝐵 ((𝑢 + 𝑣) ⊕ 𝑧) = (𝑢 ⊕ (𝑣 ⊕ 𝑧))) |
| 84 | 42, 83 | jca 511 |
. . 3
⊢ ((𝑀 ∈ Grp ∧ 𝑧 ∈ 𝐵) → (((0g‘𝑀) ⊕ 𝑧) = 𝑧 ∧ ∀𝑢 ∈ 𝐵 ∀𝑣 ∈ 𝐵 ((𝑢 + 𝑣) ⊕ 𝑧) = (𝑢 ⊕ (𝑣 ⊕ 𝑧)))) |
| 85 | 84 | ralrimiva 3127 |
. 2
⊢ (𝑀 ∈ Grp → ∀𝑧 ∈ 𝐵 (((0g‘𝑀) ⊕ 𝑧) = 𝑧 ∧ ∀𝑢 ∈ 𝐵 ∀𝑣 ∈ 𝐵 ((𝑢 + 𝑣) ⊕ 𝑧) = (𝑢 ⊕ (𝑣 ⊕ 𝑧)))) |
| 86 | 2, 7, 30 | isga 19229 |
. 2
⊢ ( ⊕ ∈
(𝑀 GrpAct 𝐵) ↔ ((𝑀 ∈ Grp ∧ 𝐵 ∈ V) ∧ ( ⊕ :(𝐵 × 𝐵)⟶𝐵 ∧ ∀𝑧 ∈ 𝐵 (((0g‘𝑀) ⊕ 𝑧) = 𝑧 ∧ ∀𝑢 ∈ 𝐵 ∀𝑣 ∈ 𝐵 ((𝑢 + 𝑣) ⊕ 𝑧) = (𝑢 ⊕ (𝑣 ⊕ 𝑧)))))) |
| 87 | 1, 4, 23, 85, 86 | syl22anbrc 32391 |
1
⊢ (𝑀 ∈ Grp → ⊕ ∈
(𝑀 GrpAct 𝐵)) |