Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fldextrspundgdvdslem Structured version   Visualization version   GIF version

Theorem fldextrspundgdvdslem 33693
Description: Lemma for fldextrspundgdvds 33694. (Contributed by Thierry Arnoux, 19-Oct-2025.)
Hypotheses
Ref Expression
fldextrspun.k 𝐾 = (𝐿s 𝐹)
fldextrspun.i 𝐼 = (𝐿s 𝐺)
fldextrspun.j 𝐽 = (𝐿s 𝐻)
fldextrspun.2 (𝜑𝐿 ∈ Field)
fldextrspun.3 (𝜑𝐹 ∈ (SubDRing‘𝐼))
fldextrspun.4 (𝜑𝐹 ∈ (SubDRing‘𝐽))
fldextrspun.5 (𝜑𝐺 ∈ (SubDRing‘𝐿))
fldextrspun.6 (𝜑𝐻 ∈ (SubDRing‘𝐿))
fldextrspundglemul.7 (𝜑 → (𝐽[:]𝐾) ∈ ℕ0)
fldextrspundglemul.1 𝐸 = (𝐿s (𝐿 fldGen (𝐺𝐻)))
fldextrspundgledvds.1 (𝜑 → (𝐼[:]𝐾) ∈ ℕ)
Assertion
Ref Expression
fldextrspundgdvdslem (𝜑 → (𝐸[:]𝐼) ∈ ℕ0)

Proof of Theorem fldextrspundgdvdslem
StepHypRef Expression
1 eqid 2731 . . . . 5 (Base‘𝐿) = (Base‘𝐿)
2 fldextrspun.i . . . . 5 𝐼 = (𝐿s 𝐺)
3 fldextrspundglemul.1 . . . . 5 𝐸 = (𝐿s (𝐿 fldGen (𝐺𝐻)))
4 fldextrspun.2 . . . . 5 (𝜑𝐿 ∈ Field)
5 fldextrspun.5 . . . . 5 (𝜑𝐺 ∈ (SubDRing‘𝐿))
6 fldextrspun.6 . . . . . 6 (𝜑𝐻 ∈ (SubDRing‘𝐿))
71sdrgss 20708 . . . . . 6 (𝐻 ∈ (SubDRing‘𝐿) → 𝐻 ⊆ (Base‘𝐿))
86, 7syl 17 . . . . 5 (𝜑𝐻 ⊆ (Base‘𝐿))
91, 2, 3, 4, 5, 8fldgenfldext 33681 . . . 4 (𝜑𝐸/FldExt𝐼)
10 extdgcl 33669 . . . 4 (𝐸/FldExt𝐼 → (𝐸[:]𝐼) ∈ ℕ0*)
119, 10syl 17 . . 3 (𝜑 → (𝐸[:]𝐼) ∈ ℕ0*)
12 elxnn0 12456 . . 3 ((𝐸[:]𝐼) ∈ ℕ0* ↔ ((𝐸[:]𝐼) ∈ ℕ0 ∨ (𝐸[:]𝐼) = +∞))
1311, 12sylib 218 . 2 (𝜑 → ((𝐸[:]𝐼) ∈ ℕ0 ∨ (𝐸[:]𝐼) = +∞))
14 fldextrspun.3 . . . . . . 7 (𝜑𝐹 ∈ (SubDRing‘𝐼))
15 fldextrspun.k . . . . . . 7 𝐾 = (𝐿s 𝐹)
162, 4, 5, 14, 15fldsdrgfldext2 33675 . . . . . 6 (𝜑𝐼/FldExt𝐾)
17 extdgmul 33676 . . . . . 6 ((𝐸/FldExt𝐼𝐼/FldExt𝐾) → (𝐸[:]𝐾) = ((𝐸[:]𝐼) ·e (𝐼[:]𝐾)))
189, 16, 17syl2anc 584 . . . . 5 (𝜑 → (𝐸[:]𝐾) = ((𝐸[:]𝐼) ·e (𝐼[:]𝐾)))
1918adantr 480 . . . 4 ((𝜑 ∧ (𝐸[:]𝐼) = +∞) → (𝐸[:]𝐾) = ((𝐸[:]𝐼) ·e (𝐼[:]𝐾)))
20 simpr 484 . . . . 5 ((𝜑 ∧ (𝐸[:]𝐼) = +∞) → (𝐸[:]𝐼) = +∞)
2120oveq1d 7361 . . . 4 ((𝜑 ∧ (𝐸[:]𝐼) = +∞) → ((𝐸[:]𝐼) ·e (𝐼[:]𝐾)) = (+∞ ·e (𝐼[:]𝐾)))
22 fldextrspundgledvds.1 . . . . . . . 8 (𝜑 → (𝐼[:]𝐾) ∈ ℕ)
2322nnred 12140 . . . . . . 7 (𝜑 → (𝐼[:]𝐾) ∈ ℝ)
2423rexrd 11162 . . . . . 6 (𝜑 → (𝐼[:]𝐾) ∈ ℝ*)
2524adantr 480 . . . . 5 ((𝜑 ∧ (𝐸[:]𝐼) = +∞) → (𝐼[:]𝐾) ∈ ℝ*)
2622nngt0d 12174 . . . . . 6 (𝜑 → 0 < (𝐼[:]𝐾))
2726adantr 480 . . . . 5 ((𝜑 ∧ (𝐸[:]𝐼) = +∞) → 0 < (𝐼[:]𝐾))
28 xmulpnf2 13174 . . . . 5 (((𝐼[:]𝐾) ∈ ℝ* ∧ 0 < (𝐼[:]𝐾)) → (+∞ ·e (𝐼[:]𝐾)) = +∞)
2925, 27, 28syl2anc 584 . . . 4 ((𝜑 ∧ (𝐸[:]𝐼) = +∞) → (+∞ ·e (𝐼[:]𝐾)) = +∞)
3019, 21, 293eqtrd 2770 . . 3 ((𝜑 ∧ (𝐸[:]𝐼) = +∞) → (𝐸[:]𝐾) = +∞)
314flddrngd 20656 . . . . . . . . . . 11 (𝜑𝐿 ∈ DivRing)
321sdrgss 20708 . . . . . . . . . . . . 13 (𝐺 ∈ (SubDRing‘𝐿) → 𝐺 ⊆ (Base‘𝐿))
335, 32syl 17 . . . . . . . . . . . 12 (𝜑𝐺 ⊆ (Base‘𝐿))
3433, 8unssd 4139 . . . . . . . . . . 11 (𝜑 → (𝐺𝐻) ⊆ (Base‘𝐿))
351, 31, 34fldgensdrg 33280 . . . . . . . . . 10 (𝜑 → (𝐿 fldGen (𝐺𝐻)) ∈ (SubDRing‘𝐿))
36 fldextrspun.j . . . . . . . . . . . . . . . 16 𝐽 = (𝐿s 𝐻)
37 fldextrspun.4 . . . . . . . . . . . . . . . 16 (𝜑𝐹 ∈ (SubDRing‘𝐽))
38 fldextrspundglemul.7 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐽[:]𝐾) ∈ ℕ0)
39 eqid 2731 . . . . . . . . . . . . . . . 16 (RingSpan‘𝐿) = (RingSpan‘𝐿)
40 eqid 2731 . . . . . . . . . . . . . . . 16 ((RingSpan‘𝐿)‘(𝐺𝐻)) = ((RingSpan‘𝐿)‘(𝐺𝐻))
41 eqid 2731 . . . . . . . . . . . . . . . 16 (𝐿s ((RingSpan‘𝐿)‘(𝐺𝐻))) = (𝐿s ((RingSpan‘𝐿)‘(𝐺𝐻)))
4215, 2, 36, 4, 14, 37, 5, 6, 38, 39, 40, 41fldextrspunlem2 33690 . . . . . . . . . . . . . . 15 (𝜑 → ((RingSpan‘𝐿)‘(𝐺𝐻)) = (𝐿 fldGen (𝐺𝐻)))
4342oveq2d 7362 . . . . . . . . . . . . . 14 (𝜑 → (𝐿s ((RingSpan‘𝐿)‘(𝐺𝐻))) = (𝐿s (𝐿 fldGen (𝐺𝐻))))
443, 43eqtr4id 2785 . . . . . . . . . . . . 13 (𝜑𝐸 = (𝐿s ((RingSpan‘𝐿)‘(𝐺𝐻))))
4515, 2, 36, 4, 14, 37, 5, 6, 38, 39, 40, 41fldextrspunfld 33689 . . . . . . . . . . . . 13 (𝜑 → (𝐿s ((RingSpan‘𝐿)‘(𝐺𝐻))) ∈ Field)
4644, 45eqeltrd 2831 . . . . . . . . . . . 12 (𝜑𝐸 ∈ Field)
4746flddrngd 20656 . . . . . . . . . . 11 (𝜑𝐸 ∈ DivRing)
4847drngringd 20652 . . . . . . . . . . . 12 (𝜑𝐸 ∈ Ring)
493oveq1i 7356 . . . . . . . . . . . . . . . 16 (𝐸s 𝐹) = ((𝐿s (𝐿 fldGen (𝐺𝐻))) ↾s 𝐹)
50 ovexd 7381 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐿 fldGen (𝐺𝐻)) ∈ V)
51 eqid 2731 . . . . . . . . . . . . . . . . . . . . . 22 (Base‘𝐼) = (Base‘𝐼)
5251sdrgss 20708 . . . . . . . . . . . . . . . . . . . . 21 (𝐹 ∈ (SubDRing‘𝐼) → 𝐹 ⊆ (Base‘𝐼))
5314, 52syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝐹 ⊆ (Base‘𝐼))
542, 1ressbas2 17149 . . . . . . . . . . . . . . . . . . . . 21 (𝐺 ⊆ (Base‘𝐿) → 𝐺 = (Base‘𝐼))
5533, 54syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝐺 = (Base‘𝐼))
5653, 55sseqtrrd 3967 . . . . . . . . . . . . . . . . . . 19 (𝜑𝐹𝐺)
57 ssun1 4125 . . . . . . . . . . . . . . . . . . . 20 𝐺 ⊆ (𝐺𝐻)
5857a1i 11 . . . . . . . . . . . . . . . . . . 19 (𝜑𝐺 ⊆ (𝐺𝐻))
5956, 58sstrd 3940 . . . . . . . . . . . . . . . . . 18 (𝜑𝐹 ⊆ (𝐺𝐻))
601, 31, 34fldgenssid 33279 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝐺𝐻) ⊆ (𝐿 fldGen (𝐺𝐻)))
6159, 60sstrd 3940 . . . . . . . . . . . . . . . . 17 (𝜑𝐹 ⊆ (𝐿 fldGen (𝐺𝐻)))
62 ressabs 17159 . . . . . . . . . . . . . . . . 17 (((𝐿 fldGen (𝐺𝐻)) ∈ V ∧ 𝐹 ⊆ (𝐿 fldGen (𝐺𝐻))) → ((𝐿s (𝐿 fldGen (𝐺𝐻))) ↾s 𝐹) = (𝐿s 𝐹))
6350, 61, 62syl2anc 584 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝐿s (𝐿 fldGen (𝐺𝐻))) ↾s 𝐹) = (𝐿s 𝐹))
6449, 63eqtrid 2778 . . . . . . . . . . . . . . 15 (𝜑 → (𝐸s 𝐹) = (𝐿s 𝐹))
652oveq1i 7356 . . . . . . . . . . . . . . . 16 (𝐼s 𝐹) = ((𝐿s 𝐺) ↾s 𝐹)
66 ressabs 17159 . . . . . . . . . . . . . . . . 17 ((𝐺 ∈ (SubDRing‘𝐿) ∧ 𝐹𝐺) → ((𝐿s 𝐺) ↾s 𝐹) = (𝐿s 𝐹))
675, 56, 66syl2anc 584 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝐿s 𝐺) ↾s 𝐹) = (𝐿s 𝐹))
6865, 67eqtrid 2778 . . . . . . . . . . . . . . 15 (𝜑 → (𝐼s 𝐹) = (𝐿s 𝐹))
6964, 68eqtr4d 2769 . . . . . . . . . . . . . 14 (𝜑 → (𝐸s 𝐹) = (𝐼s 𝐹))
70 eqid 2731 . . . . . . . . . . . . . . . 16 (𝐼s 𝐹) = (𝐼s 𝐹)
7170sdrgdrng 20705 . . . . . . . . . . . . . . 15 (𝐹 ∈ (SubDRing‘𝐼) → (𝐼s 𝐹) ∈ DivRing)
7214, 71syl 17 . . . . . . . . . . . . . 14 (𝜑 → (𝐼s 𝐹) ∈ DivRing)
7369, 72eqeltrd 2831 . . . . . . . . . . . . 13 (𝜑 → (𝐸s 𝐹) ∈ DivRing)
7473drngringd 20652 . . . . . . . . . . . 12 (𝜑 → (𝐸s 𝐹) ∈ Ring)
751, 31, 34fldgenssv 33281 . . . . . . . . . . . . . 14 (𝜑 → (𝐿 fldGen (𝐺𝐻)) ⊆ (Base‘𝐿))
763, 1ressbas2 17149 . . . . . . . . . . . . . 14 ((𝐿 fldGen (𝐺𝐻)) ⊆ (Base‘𝐿) → (𝐿 fldGen (𝐺𝐻)) = (Base‘𝐸))
7775, 76syl 17 . . . . . . . . . . . . 13 (𝜑 → (𝐿 fldGen (𝐺𝐻)) = (Base‘𝐸))
7861, 77sseqtrd 3966 . . . . . . . . . . . 12 (𝜑𝐹 ⊆ (Base‘𝐸))
7931drngringd 20652 . . . . . . . . . . . . . . 15 (𝜑𝐿 ∈ Ring)
8058, 60sstrd 3940 . . . . . . . . . . . . . . . 16 (𝜑𝐺 ⊆ (𝐿 fldGen (𝐺𝐻)))
81 sdrgsubrg 20706 . . . . . . . . . . . . . . . . 17 (𝐺 ∈ (SubDRing‘𝐿) → 𝐺 ∈ (SubRing‘𝐿))
82 eqid 2731 . . . . . . . . . . . . . . . . . 18 (1r𝐿) = (1r𝐿)
8382subrg1cl 20495 . . . . . . . . . . . . . . . . 17 (𝐺 ∈ (SubRing‘𝐿) → (1r𝐿) ∈ 𝐺)
845, 81, 833syl 18 . . . . . . . . . . . . . . . 16 (𝜑 → (1r𝐿) ∈ 𝐺)
8580, 84sseldd 3930 . . . . . . . . . . . . . . 15 (𝜑 → (1r𝐿) ∈ (𝐿 fldGen (𝐺𝐻)))
863, 1, 82ress1r 33201 . . . . . . . . . . . . . . 15 ((𝐿 ∈ Ring ∧ (1r𝐿) ∈ (𝐿 fldGen (𝐺𝐻)) ∧ (𝐿 fldGen (𝐺𝐻)) ⊆ (Base‘𝐿)) → (1r𝐿) = (1r𝐸))
8779, 85, 75, 86syl3anc 1373 . . . . . . . . . . . . . 14 (𝜑 → (1r𝐿) = (1r𝐸))
882, 1, 82ress1r 33201 . . . . . . . . . . . . . . 15 ((𝐿 ∈ Ring ∧ (1r𝐿) ∈ 𝐺𝐺 ⊆ (Base‘𝐿)) → (1r𝐿) = (1r𝐼))
8979, 84, 33, 88syl3anc 1373 . . . . . . . . . . . . . 14 (𝜑 → (1r𝐿) = (1r𝐼))
9087, 89eqtr3d 2768 . . . . . . . . . . . . 13 (𝜑 → (1r𝐸) = (1r𝐼))
91 sdrgsubrg 20706 . . . . . . . . . . . . . 14 (𝐹 ∈ (SubDRing‘𝐼) → 𝐹 ∈ (SubRing‘𝐼))
92 eqid 2731 . . . . . . . . . . . . . . 15 (1r𝐼) = (1r𝐼)
9392subrg1cl 20495 . . . . . . . . . . . . . 14 (𝐹 ∈ (SubRing‘𝐼) → (1r𝐼) ∈ 𝐹)
9414, 91, 933syl 18 . . . . . . . . . . . . 13 (𝜑 → (1r𝐼) ∈ 𝐹)
9590, 94eqeltrd 2831 . . . . . . . . . . . 12 (𝜑 → (1r𝐸) ∈ 𝐹)
96 eqid 2731 . . . . . . . . . . . . 13 (Base‘𝐸) = (Base‘𝐸)
97 eqid 2731 . . . . . . . . . . . . 13 (1r𝐸) = (1r𝐸)
9896, 97issubrg 20486 . . . . . . . . . . . 12 (𝐹 ∈ (SubRing‘𝐸) ↔ ((𝐸 ∈ Ring ∧ (𝐸s 𝐹) ∈ Ring) ∧ (𝐹 ⊆ (Base‘𝐸) ∧ (1r𝐸) ∈ 𝐹)))
9948, 74, 78, 95, 98syl22anbrc 32434 . . . . . . . . . . 11 (𝜑𝐹 ∈ (SubRing‘𝐸))
100 issdrg 20703 . . . . . . . . . . 11 (𝐹 ∈ (SubDRing‘𝐸) ↔ (𝐸 ∈ DivRing ∧ 𝐹 ∈ (SubRing‘𝐸) ∧ (𝐸s 𝐹) ∈ DivRing))
10147, 99, 73, 100syl3anbrc 1344 . . . . . . . . . 10 (𝜑𝐹 ∈ (SubDRing‘𝐸))
1023, 4, 35, 101, 15fldsdrgfldext2 33675 . . . . . . . . 9 (𝜑𝐸/FldExt𝐾)
103 extdgcl 33669 . . . . . . . . 9 (𝐸/FldExt𝐾 → (𝐸[:]𝐾) ∈ ℕ0*)
104102, 103syl 17 . . . . . . . 8 (𝜑 → (𝐸[:]𝐾) ∈ ℕ0*)
10522nnnn0d 12442 . . . . . . . . 9 (𝜑 → (𝐼[:]𝐾) ∈ ℕ0)
106105, 38nn0mulcld 12447 . . . . . . . 8 (𝜑 → ((𝐼[:]𝐾) · (𝐽[:]𝐾)) ∈ ℕ0)
10715, 2, 36, 4, 14, 37, 5, 6, 38, 3fldextrspundglemul 33692 . . . . . . . . 9 (𝜑 → (𝐸[:]𝐾) ≤ ((𝐼[:]𝐾) ·e (𝐽[:]𝐾)))
10838nn0red 12443 . . . . . . . . . 10 (𝜑 → (𝐽[:]𝐾) ∈ ℝ)
109 rexmul 13170 . . . . . . . . . 10 (((𝐼[:]𝐾) ∈ ℝ ∧ (𝐽[:]𝐾) ∈ ℝ) → ((𝐼[:]𝐾) ·e (𝐽[:]𝐾)) = ((𝐼[:]𝐾) · (𝐽[:]𝐾)))
11023, 108, 109syl2anc 584 . . . . . . . . 9 (𝜑 → ((𝐼[:]𝐾) ·e (𝐽[:]𝐾)) = ((𝐼[:]𝐾) · (𝐽[:]𝐾)))
111107, 110breqtrd 5115 . . . . . . . 8 (𝜑 → (𝐸[:]𝐾) ≤ ((𝐼[:]𝐾) · (𝐽[:]𝐾)))
112 xnn0lenn0nn0 13144 . . . . . . . 8 (((𝐸[:]𝐾) ∈ ℕ0* ∧ ((𝐼[:]𝐾) · (𝐽[:]𝐾)) ∈ ℕ0 ∧ (𝐸[:]𝐾) ≤ ((𝐼[:]𝐾) · (𝐽[:]𝐾))) → (𝐸[:]𝐾) ∈ ℕ0)
113104, 106, 111, 112syl3anc 1373 . . . . . . 7 (𝜑 → (𝐸[:]𝐾) ∈ ℕ0)
114113nn0red 12443 . . . . . 6 (𝜑 → (𝐸[:]𝐾) ∈ ℝ)
115114adantr 480 . . . . 5 ((𝜑 ∧ (𝐸[:]𝐼) = +∞) → (𝐸[:]𝐾) ∈ ℝ)
116115renepnfd 11163 . . . 4 ((𝜑 ∧ (𝐸[:]𝐼) = +∞) → (𝐸[:]𝐾) ≠ +∞)
117116neneqd 2933 . . 3 ((𝜑 ∧ (𝐸[:]𝐼) = +∞) → ¬ (𝐸[:]𝐾) = +∞)
11830, 117pm2.65da 816 . 2 (𝜑 → ¬ (𝐸[:]𝐼) = +∞)
11913, 118olcnd 877 1 (𝜑 → (𝐸[:]𝐼) ∈ ℕ0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847   = wceq 1541  wcel 2111  Vcvv 3436  cun 3895  wss 3897   class class class wbr 5089  cfv 6481  (class class class)co 7346  cr 11005  0cc0 11006   · cmul 11011  +∞cpnf 11143  *cxr 11145   < clt 11146  cle 11147  cn 12125  0cn0 12381  0*cxnn0 12454   ·e cxmu 13010  Basecbs 17120  s cress 17141  1rcur 20099  Ringcrg 20151  SubRingcsubrg 20484  RingSpancrgspn 20525  DivRingcdr 20644  Fieldcfield 20645  SubDRingcsdrg 20701   fldGen cfldgen 33276  /FldExtcfldext 33651  [:]cextdg 33653
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-reg 9478  ax-inf2 9531  ax-ac2 10354  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084  ax-addf 11085
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-tp 4578  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-iin 4942  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-of 7610  df-rpss 7656  df-om 7797  df-1st 7921  df-2nd 7922  df-supp 8091  df-tpos 8156  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-oadd 8389  df-er 8622  df-map 8752  df-ixp 8822  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-fsupp 9246  df-sup 9326  df-inf 9327  df-oi 9396  df-r1 9657  df-rank 9658  df-dju 9794  df-card 9832  df-acn 9835  df-ac 10007  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-2 12188  df-3 12189  df-4 12190  df-5 12191  df-6 12192  df-7 12193  df-8 12194  df-9 12195  df-n0 12382  df-xnn0 12455  df-z 12469  df-dec 12589  df-uz 12733  df-rp 12891  df-xneg 13011  df-xadd 13012  df-xmul 13013  df-icc 13252  df-fz 13408  df-fzo 13555  df-seq 13909  df-exp 13969  df-hash 14238  df-word 14421  df-lsw 14470  df-concat 14478  df-s1 14504  df-substr 14549  df-pfx 14579  df-s2 14755  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-clim 15395  df-sum 15594  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-starv 17176  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ocomp 17182  df-ds 17183  df-unif 17184  df-hom 17185  df-cco 17186  df-0g 17345  df-gsum 17346  df-prds 17351  df-pws 17353  df-mre 17488  df-mrc 17489  df-mri 17490  df-acs 17491  df-proset 18200  df-drs 18201  df-poset 18219  df-ipo 18434  df-mgm 18548  df-sgrp 18627  df-mnd 18643  df-mhm 18691  df-submnd 18692  df-grp 18849  df-minusg 18850  df-sbg 18851  df-mulg 18981  df-subg 19036  df-ghm 19125  df-cntz 19229  df-cntr 19230  df-lsm 19548  df-cmn 19694  df-abl 19695  df-mgp 20059  df-rng 20071  df-ur 20100  df-ring 20153  df-cring 20154  df-oppr 20255  df-dvdsr 20275  df-unit 20276  df-invr 20306  df-dvr 20319  df-nzr 20428  df-subrng 20461  df-subrg 20485  df-rgspn 20526  df-rlreg 20609  df-domn 20610  df-idom 20611  df-drng 20646  df-field 20647  df-sdrg 20702  df-lmod 20795  df-lss 20865  df-lsp 20905  df-lmhm 20956  df-lmim 20957  df-lbs 21009  df-lvec 21037  df-sra 21107  df-rgmod 21108  df-cnfld 21292  df-zring 21384  df-dsmm 21669  df-frlm 21684  df-uvc 21720  df-lindf 21743  df-linds 21744  df-assa 21790  df-ind 32832  df-fldgen 33277  df-dim 33612  df-fldext 33654  df-extdg 33655
This theorem is referenced by:  fldextrspundgdvds  33694  fldext2rspun  33695
  Copyright terms: Public domain W3C validator