Proof of Theorem fldextrspundgdvdslem
| Step | Hyp | Ref
| Expression |
| 1 | | eqid 2737 |
. . . . 5
⊢
(Base‘𝐿) =
(Base‘𝐿) |
| 2 | | fldextrspun.i |
. . . . 5
⊢ 𝐼 = (𝐿 ↾s 𝐺) |
| 3 | | fldextrspundglemul.1 |
. . . . 5
⊢ 𝐸 = (𝐿 ↾s (𝐿 fldGen (𝐺 ∪ 𝐻))) |
| 4 | | fldextrspun.2 |
. . . . 5
⊢ (𝜑 → 𝐿 ∈ Field) |
| 5 | | fldextrspun.5 |
. . . . 5
⊢ (𝜑 → 𝐺 ∈ (SubDRing‘𝐿)) |
| 6 | | fldextrspun.6 |
. . . . . 6
⊢ (𝜑 → 𝐻 ∈ (SubDRing‘𝐿)) |
| 7 | 1 | sdrgss 20794 |
. . . . . 6
⊢ (𝐻 ∈ (SubDRing‘𝐿) → 𝐻 ⊆ (Base‘𝐿)) |
| 8 | 6, 7 | syl 17 |
. . . . 5
⊢ (𝜑 → 𝐻 ⊆ (Base‘𝐿)) |
| 9 | 1, 2, 3, 4, 5, 8 | fldgenfldext 33718 |
. . . 4
⊢ (𝜑 → 𝐸/FldExt𝐼) |
| 10 | | extdgcl 33707 |
. . . 4
⊢ (𝐸/FldExt𝐼 → (𝐸[:]𝐼) ∈
ℕ0*) |
| 11 | 9, 10 | syl 17 |
. . 3
⊢ (𝜑 → (𝐸[:]𝐼) ∈
ℕ0*) |
| 12 | | elxnn0 12601 |
. . 3
⊢ ((𝐸[:]𝐼) ∈ ℕ0*
↔ ((𝐸[:]𝐼) ∈ ℕ0
∨ (𝐸[:]𝐼) = +∞)) |
| 13 | 11, 12 | sylib 218 |
. 2
⊢ (𝜑 → ((𝐸[:]𝐼) ∈ ℕ0 ∨ (𝐸[:]𝐼) = +∞)) |
| 14 | | fldextrspun.3 |
. . . . . . 7
⊢ (𝜑 → 𝐹 ∈ (SubDRing‘𝐼)) |
| 15 | | fldextrspun.k |
. . . . . . 7
⊢ 𝐾 = (𝐿 ↾s 𝐹) |
| 16 | 2, 4, 5, 14, 15 | fldsdrgfldext2 33713 |
. . . . . 6
⊢ (𝜑 → 𝐼/FldExt𝐾) |
| 17 | | extdgmul 33714 |
. . . . . 6
⊢ ((𝐸/FldExt𝐼 ∧ 𝐼/FldExt𝐾) → (𝐸[:]𝐾) = ((𝐸[:]𝐼) ·e (𝐼[:]𝐾))) |
| 18 | 9, 16, 17 | syl2anc 584 |
. . . . 5
⊢ (𝜑 → (𝐸[:]𝐾) = ((𝐸[:]𝐼) ·e (𝐼[:]𝐾))) |
| 19 | 18 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ (𝐸[:]𝐼) = +∞) → (𝐸[:]𝐾) = ((𝐸[:]𝐼) ·e (𝐼[:]𝐾))) |
| 20 | | simpr 484 |
. . . . 5
⊢ ((𝜑 ∧ (𝐸[:]𝐼) = +∞) → (𝐸[:]𝐼) = +∞) |
| 21 | 20 | oveq1d 7446 |
. . . 4
⊢ ((𝜑 ∧ (𝐸[:]𝐼) = +∞) → ((𝐸[:]𝐼) ·e (𝐼[:]𝐾)) = (+∞ ·e (𝐼[:]𝐾))) |
| 22 | | fldextrspundgledvds.1 |
. . . . . . . 8
⊢ (𝜑 → (𝐼[:]𝐾) ∈ ℕ) |
| 23 | 22 | nnred 12281 |
. . . . . . 7
⊢ (𝜑 → (𝐼[:]𝐾) ∈ ℝ) |
| 24 | 23 | rexrd 11311 |
. . . . . 6
⊢ (𝜑 → (𝐼[:]𝐾) ∈
ℝ*) |
| 25 | 24 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ (𝐸[:]𝐼) = +∞) → (𝐼[:]𝐾) ∈
ℝ*) |
| 26 | 22 | nngt0d 12315 |
. . . . . 6
⊢ (𝜑 → 0 < (𝐼[:]𝐾)) |
| 27 | 26 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ (𝐸[:]𝐼) = +∞) → 0 < (𝐼[:]𝐾)) |
| 28 | | xmulpnf2 13317 |
. . . . 5
⊢ (((𝐼[:]𝐾) ∈ ℝ* ∧ 0 <
(𝐼[:]𝐾)) → (+∞ ·e
(𝐼[:]𝐾)) = +∞) |
| 29 | 25, 27, 28 | syl2anc 584 |
. . . 4
⊢ ((𝜑 ∧ (𝐸[:]𝐼) = +∞) → (+∞
·e (𝐼[:]𝐾)) = +∞) |
| 30 | 19, 21, 29 | 3eqtrd 2781 |
. . 3
⊢ ((𝜑 ∧ (𝐸[:]𝐼) = +∞) → (𝐸[:]𝐾) = +∞) |
| 31 | 4 | flddrngd 20741 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐿 ∈ DivRing) |
| 32 | 1 | sdrgss 20794 |
. . . . . . . . . . . . 13
⊢ (𝐺 ∈ (SubDRing‘𝐿) → 𝐺 ⊆ (Base‘𝐿)) |
| 33 | 5, 32 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐺 ⊆ (Base‘𝐿)) |
| 34 | 33, 8 | unssd 4192 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐺 ∪ 𝐻) ⊆ (Base‘𝐿)) |
| 35 | 1, 31, 34 | fldgensdrg 33316 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐿 fldGen (𝐺 ∪ 𝐻)) ∈ (SubDRing‘𝐿)) |
| 36 | | fldextrspun.j |
. . . . . . . . . . . . . . . 16
⊢ 𝐽 = (𝐿 ↾s 𝐻) |
| 37 | | fldextrspun.4 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝐹 ∈ (SubDRing‘𝐽)) |
| 38 | | fldextrspundglemul.7 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (𝐽[:]𝐾) ∈
ℕ0) |
| 39 | | eqid 2737 |
. . . . . . . . . . . . . . . 16
⊢
(RingSpan‘𝐿) =
(RingSpan‘𝐿) |
| 40 | | eqid 2737 |
. . . . . . . . . . . . . . . 16
⊢
((RingSpan‘𝐿)‘(𝐺 ∪ 𝐻)) = ((RingSpan‘𝐿)‘(𝐺 ∪ 𝐻)) |
| 41 | | eqid 2737 |
. . . . . . . . . . . . . . . 16
⊢ (𝐿 ↾s
((RingSpan‘𝐿)‘(𝐺 ∪ 𝐻))) = (𝐿 ↾s ((RingSpan‘𝐿)‘(𝐺 ∪ 𝐻))) |
| 42 | 15, 2, 36, 4, 14, 37, 5, 6, 38, 39, 40, 41 | fldextrspunlem2 33727 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → ((RingSpan‘𝐿)‘(𝐺 ∪ 𝐻)) = (𝐿 fldGen (𝐺 ∪ 𝐻))) |
| 43 | 42 | oveq2d 7447 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝐿 ↾s ((RingSpan‘𝐿)‘(𝐺 ∪ 𝐻))) = (𝐿 ↾s (𝐿 fldGen (𝐺 ∪ 𝐻)))) |
| 44 | 3, 43 | eqtr4id 2796 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐸 = (𝐿 ↾s ((RingSpan‘𝐿)‘(𝐺 ∪ 𝐻)))) |
| 45 | 15, 2, 36, 4, 14, 37, 5, 6, 38, 39, 40, 41 | fldextrspunfld 33726 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝐿 ↾s ((RingSpan‘𝐿)‘(𝐺 ∪ 𝐻))) ∈ Field) |
| 46 | 44, 45 | eqeltrd 2841 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐸 ∈ Field) |
| 47 | 46 | flddrngd 20741 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐸 ∈ DivRing) |
| 48 | 47 | drngringd 20737 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐸 ∈ Ring) |
| 49 | 3 | oveq1i 7441 |
. . . . . . . . . . . . . . . 16
⊢ (𝐸 ↾s 𝐹) = ((𝐿 ↾s (𝐿 fldGen (𝐺 ∪ 𝐻))) ↾s 𝐹) |
| 50 | | ovexd 7466 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (𝐿 fldGen (𝐺 ∪ 𝐻)) ∈ V) |
| 51 | | eqid 2737 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(Base‘𝐼) =
(Base‘𝐼) |
| 52 | 51 | sdrgss 20794 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝐹 ∈ (SubDRing‘𝐼) → 𝐹 ⊆ (Base‘𝐼)) |
| 53 | 14, 52 | syl 17 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → 𝐹 ⊆ (Base‘𝐼)) |
| 54 | 2, 1 | ressbas2 17283 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝐺 ⊆ (Base‘𝐿) → 𝐺 = (Base‘𝐼)) |
| 55 | 33, 54 | syl 17 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → 𝐺 = (Base‘𝐼)) |
| 56 | 53, 55 | sseqtrrd 4021 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → 𝐹 ⊆ 𝐺) |
| 57 | | ssun1 4178 |
. . . . . . . . . . . . . . . . . . . 20
⊢ 𝐺 ⊆ (𝐺 ∪ 𝐻) |
| 58 | 57 | a1i 11 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → 𝐺 ⊆ (𝐺 ∪ 𝐻)) |
| 59 | 56, 58 | sstrd 3994 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 𝐹 ⊆ (𝐺 ∪ 𝐻)) |
| 60 | 1, 31, 34 | fldgenssid 33315 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → (𝐺 ∪ 𝐻) ⊆ (𝐿 fldGen (𝐺 ∪ 𝐻))) |
| 61 | 59, 60 | sstrd 3994 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 𝐹 ⊆ (𝐿 fldGen (𝐺 ∪ 𝐻))) |
| 62 | | ressabs 17294 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝐿 fldGen (𝐺 ∪ 𝐻)) ∈ V ∧ 𝐹 ⊆ (𝐿 fldGen (𝐺 ∪ 𝐻))) → ((𝐿 ↾s (𝐿 fldGen (𝐺 ∪ 𝐻))) ↾s 𝐹) = (𝐿 ↾s 𝐹)) |
| 63 | 50, 61, 62 | syl2anc 584 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → ((𝐿 ↾s (𝐿 fldGen (𝐺 ∪ 𝐻))) ↾s 𝐹) = (𝐿 ↾s 𝐹)) |
| 64 | 49, 63 | eqtrid 2789 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝐸 ↾s 𝐹) = (𝐿 ↾s 𝐹)) |
| 65 | 2 | oveq1i 7441 |
. . . . . . . . . . . . . . . 16
⊢ (𝐼 ↾s 𝐹) = ((𝐿 ↾s 𝐺) ↾s 𝐹) |
| 66 | | ressabs 17294 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐺 ∈ (SubDRing‘𝐿) ∧ 𝐹 ⊆ 𝐺) → ((𝐿 ↾s 𝐺) ↾s 𝐹) = (𝐿 ↾s 𝐹)) |
| 67 | 5, 56, 66 | syl2anc 584 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → ((𝐿 ↾s 𝐺) ↾s 𝐹) = (𝐿 ↾s 𝐹)) |
| 68 | 65, 67 | eqtrid 2789 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝐼 ↾s 𝐹) = (𝐿 ↾s 𝐹)) |
| 69 | 64, 68 | eqtr4d 2780 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝐸 ↾s 𝐹) = (𝐼 ↾s 𝐹)) |
| 70 | | eqid 2737 |
. . . . . . . . . . . . . . . 16
⊢ (𝐼 ↾s 𝐹) = (𝐼 ↾s 𝐹) |
| 71 | 70 | sdrgdrng 20791 |
. . . . . . . . . . . . . . 15
⊢ (𝐹 ∈ (SubDRing‘𝐼) → (𝐼 ↾s 𝐹) ∈ DivRing) |
| 72 | 14, 71 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝐼 ↾s 𝐹) ∈ DivRing) |
| 73 | 69, 72 | eqeltrd 2841 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝐸 ↾s 𝐹) ∈ DivRing) |
| 74 | 73 | drngringd 20737 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝐸 ↾s 𝐹) ∈ Ring) |
| 75 | 1, 31, 34 | fldgenssv 33317 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝐿 fldGen (𝐺 ∪ 𝐻)) ⊆ (Base‘𝐿)) |
| 76 | 3, 1 | ressbas2 17283 |
. . . . . . . . . . . . . 14
⊢ ((𝐿 fldGen (𝐺 ∪ 𝐻)) ⊆ (Base‘𝐿) → (𝐿 fldGen (𝐺 ∪ 𝐻)) = (Base‘𝐸)) |
| 77 | 75, 76 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝐿 fldGen (𝐺 ∪ 𝐻)) = (Base‘𝐸)) |
| 78 | 61, 77 | sseqtrd 4020 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐹 ⊆ (Base‘𝐸)) |
| 79 | 31 | drngringd 20737 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝐿 ∈ Ring) |
| 80 | 58, 60 | sstrd 3994 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝐺 ⊆ (𝐿 fldGen (𝐺 ∪ 𝐻))) |
| 81 | | sdrgsubrg 20792 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐺 ∈ (SubDRing‘𝐿) → 𝐺 ∈ (SubRing‘𝐿)) |
| 82 | | eqid 2737 |
. . . . . . . . . . . . . . . . . 18
⊢
(1r‘𝐿) = (1r‘𝐿) |
| 83 | 82 | subrg1cl 20580 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐺 ∈ (SubRing‘𝐿) →
(1r‘𝐿)
∈ 𝐺) |
| 84 | 5, 81, 83 | 3syl 18 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (1r‘𝐿) ∈ 𝐺) |
| 85 | 80, 84 | sseldd 3984 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (1r‘𝐿) ∈ (𝐿 fldGen (𝐺 ∪ 𝐻))) |
| 86 | 3, 1, 82 | ress1r 33238 |
. . . . . . . . . . . . . . 15
⊢ ((𝐿 ∈ Ring ∧
(1r‘𝐿)
∈ (𝐿 fldGen (𝐺 ∪ 𝐻)) ∧ (𝐿 fldGen (𝐺 ∪ 𝐻)) ⊆ (Base‘𝐿)) → (1r‘𝐿) = (1r‘𝐸)) |
| 87 | 79, 85, 75, 86 | syl3anc 1373 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (1r‘𝐿) = (1r‘𝐸)) |
| 88 | 2, 1, 82 | ress1r 33238 |
. . . . . . . . . . . . . . 15
⊢ ((𝐿 ∈ Ring ∧
(1r‘𝐿)
∈ 𝐺 ∧ 𝐺 ⊆ (Base‘𝐿)) →
(1r‘𝐿) =
(1r‘𝐼)) |
| 89 | 79, 84, 33, 88 | syl3anc 1373 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (1r‘𝐿) = (1r‘𝐼)) |
| 90 | 87, 89 | eqtr3d 2779 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (1r‘𝐸) = (1r‘𝐼)) |
| 91 | | sdrgsubrg 20792 |
. . . . . . . . . . . . . 14
⊢ (𝐹 ∈ (SubDRing‘𝐼) → 𝐹 ∈ (SubRing‘𝐼)) |
| 92 | | eqid 2737 |
. . . . . . . . . . . . . . 15
⊢
(1r‘𝐼) = (1r‘𝐼) |
| 93 | 92 | subrg1cl 20580 |
. . . . . . . . . . . . . 14
⊢ (𝐹 ∈ (SubRing‘𝐼) →
(1r‘𝐼)
∈ 𝐹) |
| 94 | 14, 91, 93 | 3syl 18 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (1r‘𝐼) ∈ 𝐹) |
| 95 | 90, 94 | eqeltrd 2841 |
. . . . . . . . . . . 12
⊢ (𝜑 → (1r‘𝐸) ∈ 𝐹) |
| 96 | | eqid 2737 |
. . . . . . . . . . . . 13
⊢
(Base‘𝐸) =
(Base‘𝐸) |
| 97 | | eqid 2737 |
. . . . . . . . . . . . 13
⊢
(1r‘𝐸) = (1r‘𝐸) |
| 98 | 96, 97 | issubrg 20571 |
. . . . . . . . . . . 12
⊢ (𝐹 ∈ (SubRing‘𝐸) ↔ ((𝐸 ∈ Ring ∧ (𝐸 ↾s 𝐹) ∈ Ring) ∧ (𝐹 ⊆ (Base‘𝐸) ∧ (1r‘𝐸) ∈ 𝐹))) |
| 99 | 48, 74, 78, 95, 98 | syl22anbrc 32474 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐹 ∈ (SubRing‘𝐸)) |
| 100 | | issdrg 20789 |
. . . . . . . . . . 11
⊢ (𝐹 ∈ (SubDRing‘𝐸) ↔ (𝐸 ∈ DivRing ∧ 𝐹 ∈ (SubRing‘𝐸) ∧ (𝐸 ↾s 𝐹) ∈ DivRing)) |
| 101 | 47, 99, 73, 100 | syl3anbrc 1344 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐹 ∈ (SubDRing‘𝐸)) |
| 102 | 3, 4, 35, 101, 15 | fldsdrgfldext2 33713 |
. . . . . . . . 9
⊢ (𝜑 → 𝐸/FldExt𝐾) |
| 103 | | extdgcl 33707 |
. . . . . . . . 9
⊢ (𝐸/FldExt𝐾 → (𝐸[:]𝐾) ∈
ℕ0*) |
| 104 | 102, 103 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → (𝐸[:]𝐾) ∈
ℕ0*) |
| 105 | 22 | nnnn0d 12587 |
. . . . . . . . 9
⊢ (𝜑 → (𝐼[:]𝐾) ∈
ℕ0) |
| 106 | 105, 38 | nn0mulcld 12592 |
. . . . . . . 8
⊢ (𝜑 → ((𝐼[:]𝐾) · (𝐽[:]𝐾)) ∈
ℕ0) |
| 107 | 15, 2, 36, 4, 14, 37, 5, 6, 38, 3 | fldextrspundglemul 33729 |
. . . . . . . . 9
⊢ (𝜑 → (𝐸[:]𝐾) ≤ ((𝐼[:]𝐾) ·e (𝐽[:]𝐾))) |
| 108 | 38 | nn0red 12588 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐽[:]𝐾) ∈ ℝ) |
| 109 | | rexmul 13313 |
. . . . . . . . . 10
⊢ (((𝐼[:]𝐾) ∈ ℝ ∧ (𝐽[:]𝐾) ∈ ℝ) → ((𝐼[:]𝐾) ·e (𝐽[:]𝐾)) = ((𝐼[:]𝐾) · (𝐽[:]𝐾))) |
| 110 | 23, 108, 109 | syl2anc 584 |
. . . . . . . . 9
⊢ (𝜑 → ((𝐼[:]𝐾) ·e (𝐽[:]𝐾)) = ((𝐼[:]𝐾) · (𝐽[:]𝐾))) |
| 111 | 107, 110 | breqtrd 5169 |
. . . . . . . 8
⊢ (𝜑 → (𝐸[:]𝐾) ≤ ((𝐼[:]𝐾) · (𝐽[:]𝐾))) |
| 112 | | xnn0lenn0nn0 13287 |
. . . . . . . 8
⊢ (((𝐸[:]𝐾) ∈ ℕ0*
∧ ((𝐼[:]𝐾) · (𝐽[:]𝐾)) ∈ ℕ0 ∧ (𝐸[:]𝐾) ≤ ((𝐼[:]𝐾) · (𝐽[:]𝐾))) → (𝐸[:]𝐾) ∈
ℕ0) |
| 113 | 104, 106,
111, 112 | syl3anc 1373 |
. . . . . . 7
⊢ (𝜑 → (𝐸[:]𝐾) ∈
ℕ0) |
| 114 | 113 | nn0red 12588 |
. . . . . 6
⊢ (𝜑 → (𝐸[:]𝐾) ∈ ℝ) |
| 115 | 114 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ (𝐸[:]𝐼) = +∞) → (𝐸[:]𝐾) ∈ ℝ) |
| 116 | 115 | renepnfd 11312 |
. . . 4
⊢ ((𝜑 ∧ (𝐸[:]𝐼) = +∞) → (𝐸[:]𝐾) ≠ +∞) |
| 117 | 116 | neneqd 2945 |
. . 3
⊢ ((𝜑 ∧ (𝐸[:]𝐼) = +∞) → ¬ (𝐸[:]𝐾) = +∞) |
| 118 | 30, 117 | pm2.65da 817 |
. 2
⊢ (𝜑 → ¬ (𝐸[:]𝐼) = +∞) |
| 119 | 13, 118 | olcnd 878 |
1
⊢ (𝜑 → (𝐸[:]𝐼) ∈
ℕ0) |