| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > syl21anbrc | Structured version Visualization version GIF version | ||
| Description: Syllogism inference. (Contributed by Peter Mazsa, 18-Sep-2022.) |
| Ref | Expression |
|---|---|
| syl21anbrc.1 | ⊢ (𝜑 → 𝜓) |
| syl21anbrc.2 | ⊢ (𝜑 → 𝜒) |
| syl21anbrc.3 | ⊢ (𝜑 → 𝜃) |
| syl21anbrc.4 | ⊢ (𝜏 ↔ ((𝜓 ∧ 𝜒) ∧ 𝜃)) |
| Ref | Expression |
|---|---|
| syl21anbrc | ⊢ (𝜑 → 𝜏) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syl21anbrc.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 2 | syl21anbrc.2 | . . 3 ⊢ (𝜑 → 𝜒) | |
| 3 | syl21anbrc.3 | . . 3 ⊢ (𝜑 → 𝜃) | |
| 4 | 1, 2, 3 | jca31 514 | . 2 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) ∧ 𝜃)) |
| 5 | syl21anbrc.4 | . 2 ⊢ (𝜏 ↔ ((𝜓 ∧ 𝜒) ∧ 𝜃)) | |
| 6 | 4, 5 | sylibr 234 | 1 ⊢ (𝜑 → 𝜏) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: fprlem1 8240 erinxp 8725 frrlem15 9672 fpwwe2lem11 10554 nqerf 10843 nqerid 10846 genpcl 10921 nqpr 10927 ltexprlem5 10953 psss 18504 psssdm2 18505 ismhmd 18678 idmhm 18687 resmhm2b 18714 prdspjmhm 18721 pwsdiagmhm 18723 pwsco1mhm 18724 pwsco2mhm 18725 frmdup1 18756 mhmfmhm 18962 isghmd 19122 ghmmhm 19123 idghm 19128 symgsubmefmndALT 19300 lactghmga 19302 frgpmhm 19662 frgpuplem 19669 mulgmhm 19724 isrhm2d 20390 idrhm 20393 pwsco1rhm 20405 pwsco2rhm 20406 subrgid 20476 issubrg2 20495 subsubrg 20501 pwsdiagrhm 20510 islmhmd 20961 reslmhm 20974 rngqiprngho 21228 issubassa 21792 subrgpsr 21903 mat1mhm 22387 mat1rhm 22388 scmatmhm 22437 scmatrhm 22438 mat2pmatmhm 22636 mat2pmatrhm 22637 m2cpmrhm 22649 pm2mpmhm 22723 pm2mprhm 22724 ptpjcn 23514 idnmhm 24658 pi1cpbl 24960 pi1grplem 24965 pi1xfr 24971 pi1coghm 24977 vitalilem1 25525 vitalilem3 25527 ssltd 27720 sssslt1 27724 sssslt2 27725 syl22anbrc 32417 fldgenfldext 33642 weiunso 36442 prjspertr 42581 prjspvs 42586 0prjspnrel 42603 nla0002 43400 nla0003 43401 clnbgrvtxel 47817 clnbgredg 47828 |
| Copyright terms: Public domain | W3C validator |