![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > syl21anbrc | Structured version Visualization version GIF version |
Description: Syllogism inference. (Contributed by Peter Mazsa, 18-Sep-2022.) |
Ref | Expression |
---|---|
syl21anbrc.1 | ⊢ (𝜑 → 𝜓) |
syl21anbrc.2 | ⊢ (𝜑 → 𝜒) |
syl21anbrc.3 | ⊢ (𝜑 → 𝜃) |
syl21anbrc.4 | ⊢ (𝜏 ↔ ((𝜓 ∧ 𝜒) ∧ 𝜃)) |
Ref | Expression |
---|---|
syl21anbrc | ⊢ (𝜑 → 𝜏) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl21anbrc.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
2 | syl21anbrc.2 | . . 3 ⊢ (𝜑 → 𝜒) | |
3 | syl21anbrc.3 | . . 3 ⊢ (𝜑 → 𝜃) | |
4 | 1, 2, 3 | jca31 507 | . 2 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) ∧ 𝜃)) |
5 | syl21anbrc.4 | . 2 ⊢ (𝜏 ↔ ((𝜓 ∧ 𝜒) ∧ 𝜃)) | |
6 | 4, 5 | sylibr 226 | 1 ⊢ (𝜑 → 𝜏) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 387 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 199 df-an 388 |
This theorem is referenced by: erinxp 8169 fpwwe2lem12 9859 nqerf 10148 nqerid 10151 genpcl 10226 nqpr 10232 ltexprlem5 10258 psss 17694 psssdm2 17695 idmhm 17824 resmhm2b 17841 prdspjmhm 17847 pwsdiagmhm 17849 pwsco1mhm 17850 pwsco2mhm 17851 frmdup1 17882 mhmfmhm 18021 isghmd 18150 ghmmhm 18151 idghm 18156 lactghmga 18305 frgpmhm 18663 frgpuplem 18670 mulgmhm 18718 isrhm2d 19215 idrhm 19218 pwsco1rhm 19225 pwsco2rhm 19226 subrgid 19272 issubrg2 19290 subsubrg 19296 pwsdiagrhm 19303 islmhmd 19545 reslmhm 19558 issubassa 19830 subrgpsr 19925 mat1mhm 20812 mat1rhm 20813 scmatmhm 20862 scmatrhm 20863 mat2pmatmhm 21060 mat2pmatrhm 21061 m2cpmrhm 21073 pm2mpmhm 21147 pm2mprhm 21148 ptpjcn 21938 idnmhm 23081 pi1cpbl 23366 pi1grplem 23371 pi1xfr 23377 pi1coghm 23383 vitalilem1 23927 vitalilem3 23929 fprlem1 32695 frrlem15 32700 sssslt1 32818 sssslt2 32819 prjspertr 38700 prjspvs 38705 0prjspnrel 38714 |
Copyright terms: Public domain | W3C validator |