Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > syl21anbrc | Structured version Visualization version GIF version |
Description: Syllogism inference. (Contributed by Peter Mazsa, 18-Sep-2022.) |
Ref | Expression |
---|---|
syl21anbrc.1 | ⊢ (𝜑 → 𝜓) |
syl21anbrc.2 | ⊢ (𝜑 → 𝜒) |
syl21anbrc.3 | ⊢ (𝜑 → 𝜃) |
syl21anbrc.4 | ⊢ (𝜏 ↔ ((𝜓 ∧ 𝜒) ∧ 𝜃)) |
Ref | Expression |
---|---|
syl21anbrc | ⊢ (𝜑 → 𝜏) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl21anbrc.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
2 | syl21anbrc.2 | . . 3 ⊢ (𝜑 → 𝜒) | |
3 | syl21anbrc.3 | . . 3 ⊢ (𝜑 → 𝜃) | |
4 | 1, 2, 3 | jca31 515 | . 2 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) ∧ 𝜃)) |
5 | syl21anbrc.4 | . 2 ⊢ (𝜏 ↔ ((𝜓 ∧ 𝜒) ∧ 𝜃)) | |
6 | 4, 5 | sylibr 233 | 1 ⊢ (𝜑 → 𝜏) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 |
This theorem is referenced by: fprlem1 8116 erinxp 8580 frrlem15 9515 fpwwe2lem11 10397 nqerf 10686 nqerid 10689 genpcl 10764 nqpr 10770 ltexprlem5 10796 psss 18298 psssdm2 18299 idmhm 18439 resmhm2b 18461 prdspjmhm 18467 pwsdiagmhm 18469 pwsco1mhm 18470 pwsco2mhm 18471 frmdup1 18503 mhmfmhm 18698 isghmd 18843 ghmmhm 18844 idghm 18849 symgsubmefmndALT 19011 lactghmga 19013 frgpmhm 19371 frgpuplem 19378 mulgmhm 19429 isrhm2d 19972 idrhm 19975 pwsco1rhm 19982 pwsco2rhm 19983 subrgid 20026 issubrg2 20044 subsubrg 20050 pwsdiagrhm 20058 islmhmd 20301 reslmhm 20314 issubassa 21073 subrgpsr 21188 mat1mhm 21633 mat1rhm 21634 scmatmhm 21683 scmatrhm 21684 mat2pmatmhm 21882 mat2pmatrhm 21883 m2cpmrhm 21895 pm2mpmhm 21969 pm2mprhm 21970 ptpjcn 22762 idnmhm 23918 pi1cpbl 24207 pi1grplem 24212 pi1xfr 24218 pi1coghm 24224 vitalilem1 24772 vitalilem3 24774 ssltd 33986 sssslt1 33989 sssslt2 33990 ismhmd 40238 prjspertr 40444 prjspvs 40449 0prjspnrel 40464 |
Copyright terms: Public domain | W3C validator |