![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > syl21anbrc | Structured version Visualization version GIF version |
Description: Syllogism inference. (Contributed by Peter Mazsa, 18-Sep-2022.) |
Ref | Expression |
---|---|
syl21anbrc.1 | ⊢ (𝜑 → 𝜓) |
syl21anbrc.2 | ⊢ (𝜑 → 𝜒) |
syl21anbrc.3 | ⊢ (𝜑 → 𝜃) |
syl21anbrc.4 | ⊢ (𝜏 ↔ ((𝜓 ∧ 𝜒) ∧ 𝜃)) |
Ref | Expression |
---|---|
syl21anbrc | ⊢ (𝜑 → 𝜏) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl21anbrc.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
2 | syl21anbrc.2 | . . 3 ⊢ (𝜑 → 𝜒) | |
3 | syl21anbrc.3 | . . 3 ⊢ (𝜑 → 𝜃) | |
4 | 1, 2, 3 | jca31 514 | . 2 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) ∧ 𝜃)) |
5 | syl21anbrc.4 | . 2 ⊢ (𝜏 ↔ ((𝜓 ∧ 𝜒) ∧ 𝜃)) | |
6 | 4, 5 | sylibr 234 | 1 ⊢ (𝜑 → 𝜏) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 |
This theorem is referenced by: fprlem1 8341 erinxp 8849 frrlem15 9826 fpwwe2lem11 10710 nqerf 10999 nqerid 11002 genpcl 11077 nqpr 11083 ltexprlem5 11109 psss 18650 psssdm2 18651 ismhmd 18821 idmhm 18830 resmhm2b 18857 prdspjmhm 18864 pwsdiagmhm 18866 pwsco1mhm 18867 pwsco2mhm 18868 frmdup1 18899 mhmfmhm 19105 isghmd 19265 ghmmhm 19266 idghm 19271 symgsubmefmndALT 19445 lactghmga 19447 frgpmhm 19807 frgpuplem 19814 mulgmhm 19869 isrhm2d 20513 idrhm 20516 pwsco1rhm 20528 pwsco2rhm 20529 subrgid 20601 issubrg2 20620 subsubrg 20626 pwsdiagrhm 20635 islmhmd 21061 reslmhm 21074 rngqiprngho 21336 issubassa 21910 subrgpsr 22021 mat1mhm 22511 mat1rhm 22512 scmatmhm 22561 scmatrhm 22562 mat2pmatmhm 22760 mat2pmatrhm 22761 m2cpmrhm 22773 pm2mpmhm 22847 pm2mprhm 22848 ptpjcn 23640 idnmhm 24796 pi1cpbl 25096 pi1grplem 25101 pi1xfr 25107 pi1coghm 25113 vitalilem1 25662 vitalilem3 25664 ssltd 27854 sssslt1 27858 sssslt2 27859 fldgenfldext 33678 weiunso 36432 prjspertr 42560 prjspvs 42565 0prjspnrel 42582 nla0002 43386 nla0003 43387 clnbgrvtxel 47702 clnbgredg 47712 |
Copyright terms: Public domain | W3C validator |