| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > syl21anbrc | Structured version Visualization version GIF version | ||
| Description: Syllogism inference. (Contributed by Peter Mazsa, 18-Sep-2022.) |
| Ref | Expression |
|---|---|
| syl21anbrc.1 | ⊢ (𝜑 → 𝜓) |
| syl21anbrc.2 | ⊢ (𝜑 → 𝜒) |
| syl21anbrc.3 | ⊢ (𝜑 → 𝜃) |
| syl21anbrc.4 | ⊢ (𝜏 ↔ ((𝜓 ∧ 𝜒) ∧ 𝜃)) |
| Ref | Expression |
|---|---|
| syl21anbrc | ⊢ (𝜑 → 𝜏) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syl21anbrc.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 2 | syl21anbrc.2 | . . 3 ⊢ (𝜑 → 𝜒) | |
| 3 | syl21anbrc.3 | . . 3 ⊢ (𝜑 → 𝜃) | |
| 4 | 1, 2, 3 | jca31 514 | . 2 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) ∧ 𝜃)) |
| 5 | syl21anbrc.4 | . 2 ⊢ (𝜏 ↔ ((𝜓 ∧ 𝜒) ∧ 𝜃)) | |
| 6 | 4, 5 | sylibr 234 | 1 ⊢ (𝜑 → 𝜏) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: fprlem1 8238 erinxp 8723 frrlem15 9659 fpwwe2lem11 10541 nqerf 10830 nqerid 10833 genpcl 10908 nqpr 10914 ltexprlem5 10940 psss 18490 psssdm2 18491 ismhmd 18698 idmhm 18707 resmhm2b 18734 prdspjmhm 18741 pwsdiagmhm 18743 pwsco1mhm 18744 pwsco2mhm 18745 frmdup1 18776 mhmfmhm 18982 isghmd 19141 ghmmhm 19142 idghm 19147 symgsubmefmndALT 19319 lactghmga 19321 frgpmhm 19681 frgpuplem 19688 mulgmhm 19743 isrhm2d 20408 idrhm 20411 pwsco1rhm 20421 pwsco2rhm 20422 subrgid 20492 issubrg2 20511 subsubrg 20517 pwsdiagrhm 20526 islmhmd 20977 reslmhm 20990 rngqiprngho 21244 issubassa 21808 subrgpsr 21918 mat1mhm 22402 mat1rhm 22403 scmatmhm 22452 scmatrhm 22453 mat2pmatmhm 22651 mat2pmatrhm 22652 m2cpmrhm 22664 pm2mpmhm 22738 pm2mprhm 22739 ptpjcn 23529 idnmhm 24672 pi1cpbl 24974 pi1grplem 24979 pi1xfr 24985 pi1coghm 24991 vitalilem1 25539 vitalilem3 25541 ssltd 27734 sssslt1 27739 sssslt2 27740 syl22anbrc 32438 fldgenfldext 33704 weiunso 36533 prjspertr 42726 prjspvs 42731 0prjspnrel 42748 nla0002 43544 nla0003 43545 clnbgrvtxel 47956 clnbgredg 47967 |
| Copyright terms: Public domain | W3C validator |