| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > syl21anbrc | Structured version Visualization version GIF version | ||
| Description: Syllogism inference. (Contributed by Peter Mazsa, 18-Sep-2022.) |
| Ref | Expression |
|---|---|
| syl21anbrc.1 | ⊢ (𝜑 → 𝜓) |
| syl21anbrc.2 | ⊢ (𝜑 → 𝜒) |
| syl21anbrc.3 | ⊢ (𝜑 → 𝜃) |
| syl21anbrc.4 | ⊢ (𝜏 ↔ ((𝜓 ∧ 𝜒) ∧ 𝜃)) |
| Ref | Expression |
|---|---|
| syl21anbrc | ⊢ (𝜑 → 𝜏) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syl21anbrc.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 2 | syl21anbrc.2 | . . 3 ⊢ (𝜑 → 𝜒) | |
| 3 | syl21anbrc.3 | . . 3 ⊢ (𝜑 → 𝜃) | |
| 4 | 1, 2, 3 | jca31 514 | . 2 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) ∧ 𝜃)) |
| 5 | syl21anbrc.4 | . 2 ⊢ (𝜏 ↔ ((𝜓 ∧ 𝜒) ∧ 𝜃)) | |
| 6 | 4, 5 | sylibr 234 | 1 ⊢ (𝜑 → 𝜏) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: fprlem1 8304 erinxp 8810 frrlem15 9776 fpwwe2lem11 10660 nqerf 10949 nqerid 10952 genpcl 11027 nqpr 11033 ltexprlem5 11059 psss 18595 psssdm2 18596 ismhmd 18769 idmhm 18778 resmhm2b 18805 prdspjmhm 18812 pwsdiagmhm 18814 pwsco1mhm 18815 pwsco2mhm 18816 frmdup1 18847 mhmfmhm 19053 isghmd 19213 ghmmhm 19214 idghm 19219 symgsubmefmndALT 19389 lactghmga 19391 frgpmhm 19751 frgpuplem 19758 mulgmhm 19813 isrhm2d 20452 idrhm 20455 pwsco1rhm 20467 pwsco2rhm 20468 subrgid 20538 issubrg2 20557 subsubrg 20563 pwsdiagrhm 20572 islmhmd 21002 reslmhm 21015 rngqiprngho 21269 issubassa 21832 subrgpsr 21943 mat1mhm 22427 mat1rhm 22428 scmatmhm 22477 scmatrhm 22478 mat2pmatmhm 22676 mat2pmatrhm 22677 m2cpmrhm 22689 pm2mpmhm 22763 pm2mprhm 22764 ptpjcn 23554 idnmhm 24698 pi1cpbl 25000 pi1grplem 25005 pi1xfr 25011 pi1coghm 25017 vitalilem1 25566 vitalilem3 25568 ssltd 27760 sssslt1 27764 sssslt2 27765 syl22anbrc 32441 fldgenfldext 33714 weiunso 36489 prjspertr 42603 prjspvs 42608 0prjspnrel 42625 nla0002 43423 nla0003 43424 clnbgrvtxel 47823 clnbgredg 47833 |
| Copyright terms: Public domain | W3C validator |