| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > syl21anbrc | Structured version Visualization version GIF version | ||
| Description: Syllogism inference. (Contributed by Peter Mazsa, 18-Sep-2022.) |
| Ref | Expression |
|---|---|
| syl21anbrc.1 | ⊢ (𝜑 → 𝜓) |
| syl21anbrc.2 | ⊢ (𝜑 → 𝜒) |
| syl21anbrc.3 | ⊢ (𝜑 → 𝜃) |
| syl21anbrc.4 | ⊢ (𝜏 ↔ ((𝜓 ∧ 𝜒) ∧ 𝜃)) |
| Ref | Expression |
|---|---|
| syl21anbrc | ⊢ (𝜑 → 𝜏) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syl21anbrc.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 2 | syl21anbrc.2 | . . 3 ⊢ (𝜑 → 𝜒) | |
| 3 | syl21anbrc.3 | . . 3 ⊢ (𝜑 → 𝜃) | |
| 4 | 1, 2, 3 | jca31 514 | . 2 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) ∧ 𝜃)) |
| 5 | syl21anbrc.4 | . 2 ⊢ (𝜏 ↔ ((𝜓 ∧ 𝜒) ∧ 𝜃)) | |
| 6 | 4, 5 | sylibr 234 | 1 ⊢ (𝜑 → 𝜏) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: fprlem1 8230 erinxp 8715 frrlem15 9650 fpwwe2lem11 10532 nqerf 10821 nqerid 10824 genpcl 10899 nqpr 10905 ltexprlem5 10931 psss 18486 psssdm2 18487 ismhmd 18694 idmhm 18703 resmhm2b 18730 prdspjmhm 18737 pwsdiagmhm 18739 pwsco1mhm 18740 pwsco2mhm 18741 frmdup1 18772 mhmfmhm 18978 isghmd 19138 ghmmhm 19139 idghm 19144 symgsubmefmndALT 19316 lactghmga 19318 frgpmhm 19678 frgpuplem 19685 mulgmhm 19740 isrhm2d 20405 idrhm 20408 pwsco1rhm 20418 pwsco2rhm 20419 subrgid 20489 issubrg2 20508 subsubrg 20514 pwsdiagrhm 20523 islmhmd 20974 reslmhm 20987 rngqiprngho 21241 issubassa 21805 subrgpsr 21916 mat1mhm 22400 mat1rhm 22401 scmatmhm 22450 scmatrhm 22451 mat2pmatmhm 22649 mat2pmatrhm 22650 m2cpmrhm 22662 pm2mpmhm 22736 pm2mprhm 22737 ptpjcn 23527 idnmhm 24670 pi1cpbl 24972 pi1grplem 24977 pi1xfr 24983 pi1coghm 24989 vitalilem1 25537 vitalilem3 25539 ssltd 27732 sssslt1 27737 sssslt2 27738 syl22anbrc 32432 fldgenfldext 33679 weiunso 36506 prjspertr 42644 prjspvs 42649 0prjspnrel 42666 nla0002 43463 nla0003 43464 clnbgrvtxel 47866 clnbgredg 47877 |
| Copyright terms: Public domain | W3C validator |