Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > syl21anbrc | Structured version Visualization version GIF version |
Description: Syllogism inference. (Contributed by Peter Mazsa, 18-Sep-2022.) |
Ref | Expression |
---|---|
syl21anbrc.1 | ⊢ (𝜑 → 𝜓) |
syl21anbrc.2 | ⊢ (𝜑 → 𝜒) |
syl21anbrc.3 | ⊢ (𝜑 → 𝜃) |
syl21anbrc.4 | ⊢ (𝜏 ↔ ((𝜓 ∧ 𝜒) ∧ 𝜃)) |
Ref | Expression |
---|---|
syl21anbrc | ⊢ (𝜑 → 𝜏) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl21anbrc.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
2 | syl21anbrc.2 | . . 3 ⊢ (𝜑 → 𝜒) | |
3 | syl21anbrc.3 | . . 3 ⊢ (𝜑 → 𝜃) | |
4 | 1, 2, 3 | jca31 514 | . 2 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) ∧ 𝜃)) |
5 | syl21anbrc.4 | . 2 ⊢ (𝜏 ↔ ((𝜓 ∧ 𝜒) ∧ 𝜃)) | |
6 | 4, 5 | sylibr 233 | 1 ⊢ (𝜑 → 𝜏) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 |
This theorem is referenced by: fprlem1 8087 erinxp 8538 frrlem15 9446 fpwwe2lem11 10328 nqerf 10617 nqerid 10620 genpcl 10695 nqpr 10701 ltexprlem5 10727 psss 18213 psssdm2 18214 idmhm 18354 resmhm2b 18376 prdspjmhm 18382 pwsdiagmhm 18384 pwsco1mhm 18385 pwsco2mhm 18386 frmdup1 18418 mhmfmhm 18613 isghmd 18758 ghmmhm 18759 idghm 18764 symgsubmefmndALT 18926 lactghmga 18928 frgpmhm 19286 frgpuplem 19293 mulgmhm 19344 isrhm2d 19887 idrhm 19890 pwsco1rhm 19897 pwsco2rhm 19898 subrgid 19941 issubrg2 19959 subsubrg 19965 pwsdiagrhm 19973 islmhmd 20216 reslmhm 20229 issubassa 20983 subrgpsr 21098 mat1mhm 21541 mat1rhm 21542 scmatmhm 21591 scmatrhm 21592 mat2pmatmhm 21790 mat2pmatrhm 21791 m2cpmrhm 21803 pm2mpmhm 21877 pm2mprhm 21878 ptpjcn 22670 idnmhm 23824 pi1cpbl 24113 pi1grplem 24118 pi1xfr 24124 pi1coghm 24130 vitalilem1 24677 vitalilem3 24679 ssltd 33913 sssslt1 33916 sssslt2 33917 ismhmd 40164 prjspertr 40365 prjspvs 40370 0prjspnrel 40385 |
Copyright terms: Public domain | W3C validator |