| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > syl21anbrc | Structured version Visualization version GIF version | ||
| Description: Syllogism inference. (Contributed by Peter Mazsa, 18-Sep-2022.) |
| Ref | Expression |
|---|---|
| syl21anbrc.1 | ⊢ (𝜑 → 𝜓) |
| syl21anbrc.2 | ⊢ (𝜑 → 𝜒) |
| syl21anbrc.3 | ⊢ (𝜑 → 𝜃) |
| syl21anbrc.4 | ⊢ (𝜏 ↔ ((𝜓 ∧ 𝜒) ∧ 𝜃)) |
| Ref | Expression |
|---|---|
| syl21anbrc | ⊢ (𝜑 → 𝜏) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syl21anbrc.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 2 | syl21anbrc.2 | . . 3 ⊢ (𝜑 → 𝜒) | |
| 3 | syl21anbrc.3 | . . 3 ⊢ (𝜑 → 𝜃) | |
| 4 | 1, 2, 3 | jca31 514 | . 2 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) ∧ 𝜃)) |
| 5 | syl21anbrc.4 | . 2 ⊢ (𝜏 ↔ ((𝜓 ∧ 𝜒) ∧ 𝜃)) | |
| 6 | 4, 5 | sylibr 234 | 1 ⊢ (𝜑 → 𝜏) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: fprlem1 8279 erinxp 8764 frrlem15 9710 fpwwe2lem11 10594 nqerf 10883 nqerid 10886 genpcl 10961 nqpr 10967 ltexprlem5 10993 psss 18539 psssdm2 18540 ismhmd 18713 idmhm 18722 resmhm2b 18749 prdspjmhm 18756 pwsdiagmhm 18758 pwsco1mhm 18759 pwsco2mhm 18760 frmdup1 18791 mhmfmhm 18997 isghmd 19157 ghmmhm 19158 idghm 19163 symgsubmefmndALT 19333 lactghmga 19335 frgpmhm 19695 frgpuplem 19702 mulgmhm 19757 isrhm2d 20396 idrhm 20399 pwsco1rhm 20411 pwsco2rhm 20412 subrgid 20482 issubrg2 20501 subsubrg 20507 pwsdiagrhm 20516 islmhmd 20946 reslmhm 20959 rngqiprngho 21213 issubassa 21776 subrgpsr 21887 mat1mhm 22371 mat1rhm 22372 scmatmhm 22421 scmatrhm 22422 mat2pmatmhm 22620 mat2pmatrhm 22621 m2cpmrhm 22633 pm2mpmhm 22707 pm2mprhm 22708 ptpjcn 23498 idnmhm 24642 pi1cpbl 24944 pi1grplem 24949 pi1xfr 24955 pi1coghm 24961 vitalilem1 25509 vitalilem3 25511 ssltd 27703 sssslt1 27707 sssslt2 27708 syl22anbrc 32384 fldgenfldext 33663 weiunso 36454 prjspertr 42593 prjspvs 42598 0prjspnrel 42615 nla0002 43413 nla0003 43414 clnbgrvtxel 47830 clnbgredg 47840 |
| Copyright terms: Public domain | W3C validator |