Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  syl3an9b Structured version   Visualization version   GIF version

Theorem syl3an9b 1431
 Description: Nested syllogism inference conjoining 3 dissimilar antecedents. (Contributed by NM, 1-May-1995.)
Hypotheses
Ref Expression
syl3an9b.1 (𝜑 → (𝜓𝜒))
syl3an9b.2 (𝜃 → (𝜒𝜏))
syl3an9b.3 (𝜂 → (𝜏𝜁))
Assertion
Ref Expression
syl3an9b ((𝜑𝜃𝜂) → (𝜓𝜁))

Proof of Theorem syl3an9b
StepHypRef Expression
1 syl3an9b.1 . . . 4 (𝜑 → (𝜓𝜒))
2 syl3an9b.2 . . . 4 (𝜃 → (𝜒𝜏))
31, 2sylan9bb 513 . . 3 ((𝜑𝜃) → (𝜓𝜏))
4 syl3an9b.3 . . 3 (𝜂 → (𝜏𝜁))
53, 4sylan9bb 513 . 2 (((𝜑𝜃) ∧ 𝜂) → (𝜓𝜁))
653impa 1107 1 ((𝜑𝜃𝜂) → (𝜓𝜁))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ wa 399   ∧ w3a 1084 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8 This theorem depends on definitions:  df-bi 210  df-an 400  df-3an 1086 This theorem is referenced by:  eloprabg  7242  dihjatcclem4  38736
 Copyright terms: Public domain W3C validator