Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sylan9bb | Structured version Visualization version GIF version |
Description: Nested syllogism inference conjoining dissimilar antecedents. (Contributed by NM, 4-Mar-1995.) |
Ref | Expression |
---|---|
sylan9bb.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
sylan9bb.2 | ⊢ (𝜃 → (𝜒 ↔ 𝜏)) |
Ref | Expression |
---|---|
sylan9bb | ⊢ ((𝜑 ∧ 𝜃) → (𝜓 ↔ 𝜏)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylan9bb.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
2 | 1 | adantr 481 | . 2 ⊢ ((𝜑 ∧ 𝜃) → (𝜓 ↔ 𝜒)) |
3 | sylan9bb.2 | . . 3 ⊢ (𝜃 → (𝜒 ↔ 𝜏)) | |
4 | 3 | adantl 482 | . 2 ⊢ ((𝜑 ∧ 𝜃) → (𝜒 ↔ 𝜏)) |
5 | 2, 4 | bitrd 278 | 1 ⊢ ((𝜑 ∧ 𝜃) → (𝜓 ↔ 𝜏)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 |
This theorem is referenced by: sylan9bbr 511 baibd 540 syl3an9b 1433 nanbi12 1498 sbcom2 2162 2sb5rf 2473 2sb6rf 2474 eqeqan12d 2753 eqeq12OLD 2758 eleq12 2829 sbhypf 3492 ceqsrex2v 3588 elabd2 3602 sseq12 3949 csbie2df 4375 2ralsng 4613 rexprgf 4630 rextpg 4636 breq12 5080 reusv2lem5 5326 opelopabg 5452 brabg 5453 opelopabgf 5454 opelopab2 5455 rbropapd 5478 ralxpf 5758 feq23 6593 f00 6665 fconstg 6670 f1oeq23 6716 f1o00 6760 fnelfp 7056 fnelnfp 7058 isofrlem 7220 f1oiso 7231 riota1a 7264 cbvmpox 7377 caovord 7492 caovord3 7494 f1oweALT 7824 oaordex 8398 oaass 8401 odi 8419 findcard2s 8957 unfilem1 9087 suppeqfsuppbi 9151 oieu 9307 r1pw 9612 carddomi2 9737 isacn 9809 djudom2 9948 axdc2 10214 alephval2 10337 fpwwe2cbv 10395 fpwwe2lem2 10397 fpwwecbv 10409 fpwwelem 10410 canthwelem 10415 canthwe 10416 distrlem4pr 10791 axpre-sup 10934 nn0ind-raph 12429 elpq 12724 xnn0xadd0 12990 elfz 13254 elfzp12 13344 expeq0 13822 leiso 14182 wrd2ind 14445 trcleq12lem 14713 dfrtrclrec2 14778 shftfib 14792 absdvdsb 15993 dvdsabsb 15994 dvdsabseq 16031 unbenlem 16618 isprs 18024 isdrs 18028 pltval 18059 lublecllem 18087 istos 18145 isdlat 18249 znfld 20777 tgss2 22146 isopn2 22192 cnpf2 22410 lmbr 22418 isreg2 22537 fclsrest 23184 qustgplem 23281 ustuqtoplem 23400 xmetec 23596 nmogelb 23889 metdstri 24023 tcphcph 24410 ulmval 25548 2lgslem1a 26548 iscgrg 26882 istrlson 28084 ispthson 28119 isspthson 28120 elwwlks2on 28333 eupth2lem1 28591 eigrei 30205 eigorthi 30208 jplem1 30639 superpos 30725 chrelati 30735 br8d 30959 issiga 32089 eulerpartlemgvv 32352 cplgredgex 33091 acycgrcycl 33118 br8 33732 br6 33733 br4 33734 elmade 34060 brsegle 34419 topfne 34552 tailfb 34575 filnetlem1 34576 nndivsub 34655 bj-elequ12 34869 bj-rest10 35268 isbasisrelowllem1 35535 isbasisrelowllem2 35536 fvineqsnf1 35590 wl-2sb6d 35722 curf 35764 curunc 35768 poimirlem26 35812 mblfinlem2 35824 cnambfre 35834 itgaddnclem2 35845 ftc1anclem1 35859 grpokerinj 36060 rngoisoval 36144 smprngopr 36219 ax12eq 36962 ax12el 36963 2llnjN 37588 2lplnj 37641 elpadd0 37830 lauteq 38116 lpolconN 39508 rexrabdioph 40623 eliunov2 41294 nzss 41942 iotasbc2 42045 or2expropbilem2 44538 elsetpreimafvbi 44854 reuopreuprim 44989 cbvmpox2 45682 naryfvalel 45987 line2x 46111 |
Copyright terms: Public domain | W3C validator |