| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sylan9bb | Structured version Visualization version GIF version | ||
| Description: Nested syllogism inference conjoining dissimilar antecedents. (Contributed by NM, 4-Mar-1995.) |
| Ref | Expression |
|---|---|
| sylan9bb.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| sylan9bb.2 | ⊢ (𝜃 → (𝜒 ↔ 𝜏)) |
| Ref | Expression |
|---|---|
| sylan9bb | ⊢ ((𝜑 ∧ 𝜃) → (𝜓 ↔ 𝜏)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylan9bb.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 2 | 1 | adantr 480 | . 2 ⊢ ((𝜑 ∧ 𝜃) → (𝜓 ↔ 𝜒)) |
| 3 | sylan9bb.2 | . . 3 ⊢ (𝜃 → (𝜒 ↔ 𝜏)) | |
| 4 | 3 | adantl 481 | . 2 ⊢ ((𝜑 ∧ 𝜃) → (𝜒 ↔ 𝜏)) |
| 5 | 2, 4 | bitrd 279 | 1 ⊢ ((𝜑 ∧ 𝜃) → (𝜓 ↔ 𝜏)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: sylan9bbr 510 baibd 539 syl3an9b 1436 nanbi12 1504 elequ12 2131 sbcom2 2178 2sb5rf 2474 2sb6rf 2475 eqeqan12d 2747 eleq12 2823 ceqsrex2v 3609 elabd2 3621 elabgt 3623 sseq12 3958 csbie2df 4392 2ralsng 4632 rexprgf 4649 rextpg 4653 breq12 5100 reusv2lem5 5344 opelopabg 5483 brabg 5484 opelopabgf 5485 opelopab2 5486 rbropapd 5507 poeq12d 5534 soeq12d 5552 freq12d 5590 seeq12d 5593 weeq12d 5610 ralxpf 5792 feq23 6640 f00 6713 fconstg 6718 f1oeq23 6762 f1o00 6806 fnelfp 7118 fnelnfp 7120 isofrlem 7283 f1oiso 7294 riota1a 7334 cbvmpox 7448 caovord 7566 caovord3 7568 f1oweALT 7913 oaordex 8482 oaass 8485 odi 8503 findcard2s 9086 unfilem1 9200 suppeqfsuppbi 9274 oieu 9436 r1pw 9749 carddomi2 9874 isacn 9946 djudom2 10086 axdc2 10351 alephval2 10474 distrlem4pr 10928 axpre-sup 11071 nn0ind-raph 12583 elpq 12879 xnn0xadd0 13153 elfz 13420 elfzp12 13510 expeq0 14006 leiso 14373 wrd2ind 14637 trcleq12lem 14907 dfrtrclrec2 14972 shftfib 14986 absdvdsb 16192 dvdsabsb 16193 dvdsabseq 16231 unbenlem 16827 isprs 18210 isdrs 18215 pltval 18244 lublecllem 18272 istos 18330 isdlat 18436 znfld 21506 tgss2 22922 isopn2 22967 cnpf2 23185 lmbr 23193 isreg2 23312 fclsrest 23959 qustgplem 24056 ustuqtoplem 24174 xmetec 24369 nmogelb 24651 metdstri 24787 tcphcph 25184 ulmval 26336 2lgslem1a 27349 elmade 27832 bdayle 27881 iscgrg 28510 istrlson 29704 ispthson 29741 isspthson 29742 elwwlks2on 29960 eupth2lem1 30219 eigrei 31835 eigorthi 31838 jplem1 32269 superpos 32355 chrelati 32365 bian1d 32456 br8d 32612 ellpi 33382 issiga 34197 eulerpartlemgvv 34461 cplgredgex 35237 acycgrcycl 35263 br8 35872 br6 35873 br4 35874 brsegle 36224 topfne 36470 tailfb 36493 filnetlem1 36494 nndivsub 36573 bj-rest10 37205 isbasisrelowllem1 37472 isbasisrelowllem2 37473 fvineqsnf1 37527 wl-2sb6d 37675 curf 37711 curunc 37715 poimirlem26 37759 mblfinlem2 37771 cnambfre 37781 itgaddnclem2 37792 ftc1anclem1 37806 grpokerinj 38006 rngoisoval 38090 smprngopr 38165 parteq12 38947 ax12eq 39113 ax12el 39114 2llnjN 39739 2lplnj 39792 elpadd0 39981 lauteq 40267 lpolconN 41659 f1o2d2 42404 rexrabdioph 42951 tfsnfin 43509 eliunov2 43836 nzss 44474 iotasbc2 44577 or2expropbilem2 47195 elsetpreimafvbi 47553 reuopreuprim 47688 grlicref 48174 cbvmpox2 48498 naryfvalel 48792 line2x 48916 brab2ddw 48990 brab2ddw2 48991 |
| Copyright terms: Public domain | W3C validator |