![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sylan9bb | Structured version Visualization version GIF version |
Description: Nested syllogism inference conjoining dissimilar antecedents. (Contributed by NM, 4-Mar-1995.) |
Ref | Expression |
---|---|
sylan9bb.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
sylan9bb.2 | ⊢ (𝜃 → (𝜒 ↔ 𝜏)) |
Ref | Expression |
---|---|
sylan9bb | ⊢ ((𝜑 ∧ 𝜃) → (𝜓 ↔ 𝜏)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylan9bb.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
2 | 1 | adantr 479 | . 2 ⊢ ((𝜑 ∧ 𝜃) → (𝜓 ↔ 𝜒)) |
3 | sylan9bb.2 | . . 3 ⊢ (𝜃 → (𝜒 ↔ 𝜏)) | |
4 | 3 | adantl 480 | . 2 ⊢ ((𝜑 ∧ 𝜃) → (𝜒 ↔ 𝜏)) |
5 | 2, 4 | bitrd 278 | 1 ⊢ ((𝜑 ∧ 𝜃) → (𝜓 ↔ 𝜏)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 395 |
This theorem is referenced by: sylan9bbr 509 baibd 538 syl3an9b 1432 nanbi12 1499 sbcom2 2159 2sb5rf 2469 2sb6rf 2470 eqeqan12d 2744 eqeq12OLD 2749 eleq12 2821 sbhypfOLD 3538 ceqsrex2v 3645 elabd2 3659 sseq12 4008 csbie2df 4439 2ralsng 4679 rexprgf 4696 rextpg 4702 breq12 5152 reusv2lem5 5399 opelopabg 5537 brabg 5538 opelopabgf 5539 opelopab2 5540 rbropapd 5563 ralxpf 5845 feq23 6700 f00 6772 fconstg 6777 f1oeq23 6823 f1o00 6867 fnelfp 7174 fnelnfp 7176 isofrlem 7339 f1oiso 7350 riota1a 7390 cbvmpox 7504 caovord 7620 caovord3 7622 f1oweALT 7961 oaordex 8560 oaass 8563 odi 8581 findcard2s 9167 unfilem1 9312 suppeqfsuppbi 9379 oieu 9536 r1pw 9842 carddomi2 9967 isacn 10041 djudom2 10180 axdc2 10446 alephval2 10569 fpwwe2cbv 10627 fpwwe2lem2 10629 fpwwecbv 10641 fpwwelem 10642 canthwelem 10647 canthwe 10648 distrlem4pr 11023 axpre-sup 11166 nn0ind-raph 12666 elpq 12963 xnn0xadd0 13230 elfz 13494 elfzp12 13584 expeq0 14062 leiso 14424 wrd2ind 14677 trcleq12lem 14944 dfrtrclrec2 15009 shftfib 15023 absdvdsb 16222 dvdsabsb 16223 dvdsabseq 16260 unbenlem 16845 isprs 18254 isdrs 18258 pltval 18289 lublecllem 18317 istos 18375 isdlat 18479 znfld 21335 tgss2 22710 isopn2 22756 cnpf2 22974 lmbr 22982 isreg2 23101 fclsrest 23748 qustgplem 23845 ustuqtoplem 23964 xmetec 24160 nmogelb 24453 metdstri 24587 tcphcph 24985 ulmval 26128 2lgslem1a 27130 elmade 27599 iscgrg 28030 istrlson 29231 ispthson 29266 isspthson 29267 elwwlks2on 29480 eupth2lem1 29738 eigrei 31354 eigorthi 31357 jplem1 31788 superpos 31874 chrelati 31884 br8d 32106 issiga 33408 eulerpartlemgvv 33673 cplgredgex 34409 acycgrcycl 34436 br8 35030 br6 35031 br4 35032 brsegle 35384 topfne 35542 tailfb 35565 filnetlem1 35566 nndivsub 35645 bj-elequ12 35859 bj-rest10 36272 isbasisrelowllem1 36539 isbasisrelowllem2 36540 fvineqsnf1 36594 wl-2sb6d 36726 curf 36769 curunc 36773 poimirlem26 36817 mblfinlem2 36829 cnambfre 36839 itgaddnclem2 36850 ftc1anclem1 36864 grpokerinj 37064 rngoisoval 37148 smprngopr 37223 parteq12 37949 ax12eq 38114 ax12el 38115 2llnjN 38741 2lplnj 38794 elpadd0 38983 lauteq 39269 lpolconN 40661 f1o2d2 41361 rexrabdioph 41834 tfsnfin 42404 eliunov2 42732 nzss 43378 iotasbc2 43481 or2expropbilem2 46041 elsetpreimafvbi 46357 reuopreuprim 46492 cbvmpox2 47099 naryfvalel 47403 line2x 47527 |
Copyright terms: Public domain | W3C validator |