| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sylan9bb | Structured version Visualization version GIF version | ||
| Description: Nested syllogism inference conjoining dissimilar antecedents. (Contributed by NM, 4-Mar-1995.) |
| Ref | Expression |
|---|---|
| sylan9bb.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| sylan9bb.2 | ⊢ (𝜃 → (𝜒 ↔ 𝜏)) |
| Ref | Expression |
|---|---|
| sylan9bb | ⊢ ((𝜑 ∧ 𝜃) → (𝜓 ↔ 𝜏)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylan9bb.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 2 | 1 | adantr 480 | . 2 ⊢ ((𝜑 ∧ 𝜃) → (𝜓 ↔ 𝜒)) |
| 3 | sylan9bb.2 | . . 3 ⊢ (𝜃 → (𝜒 ↔ 𝜏)) | |
| 4 | 3 | adantl 481 | . 2 ⊢ ((𝜑 ∧ 𝜃) → (𝜒 ↔ 𝜏)) |
| 5 | 2, 4 | bitrd 279 | 1 ⊢ ((𝜑 ∧ 𝜃) → (𝜓 ↔ 𝜏)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: sylan9bbr 510 baibd 539 syl3an9b 1436 nanbi12 1504 elequ12 2129 sbcom2 2176 2sb5rf 2472 2sb6rf 2473 eqeqan12d 2745 eleq12 2821 ceqsrex2v 3608 elabd2 3620 elabgt 3622 sseq12 3957 csbie2df 4388 2ralsng 4626 rexprgf 4643 rextpg 4647 breq12 5091 reusv2lem5 5335 opelopabg 5473 brabg 5474 opelopabgf 5475 opelopab2 5476 rbropapd 5497 poeq12d 5524 soeq12d 5542 freq12d 5580 seeq12d 5583 weeq12d 5600 ralxpf 5781 feq23 6627 f00 6700 fconstg 6705 f1oeq23 6749 f1o00 6793 fnelfp 7104 fnelnfp 7106 isofrlem 7269 f1oiso 7280 riota1a 7320 cbvmpox 7434 caovord 7552 caovord3 7554 f1oweALT 7899 oaordex 8468 oaass 8471 odi 8489 findcard2s 9070 unfilem1 9184 suppeqfsuppbi 9258 oieu 9420 r1pw 9733 carddomi2 9858 isacn 9930 djudom2 10070 axdc2 10335 alephval2 10458 distrlem4pr 10912 axpre-sup 11055 nn0ind-raph 12568 elpq 12868 xnn0xadd0 13141 elfz 13408 elfzp12 13498 expeq0 13994 leiso 14361 wrd2ind 14625 trcleq12lem 14895 dfrtrclrec2 14960 shftfib 14974 absdvdsb 16180 dvdsabsb 16181 dvdsabseq 16219 unbenlem 16815 isprs 18197 isdrs 18202 pltval 18231 lublecllem 18259 istos 18317 isdlat 18423 znfld 21492 tgss2 22897 isopn2 22942 cnpf2 23160 lmbr 23168 isreg2 23287 fclsrest 23934 qustgplem 24031 ustuqtoplem 24149 xmetec 24344 nmogelb 24626 metdstri 24762 tcphcph 25159 ulmval 26311 2lgslem1a 27324 elmade 27807 bdayle 27856 iscgrg 28485 istrlson 29678 ispthson 29715 isspthson 29716 elwwlks2on 29932 eupth2lem1 30190 eigrei 31806 eigorthi 31809 jplem1 32240 superpos 32326 chrelati 32336 bian1d 32427 br8d 32583 ellpi 33330 issiga 34117 eulerpartlemgvv 34381 cplgredgex 35157 acycgrcycl 35183 br8 35792 br6 35793 br4 35794 brsegle 36142 topfne 36388 tailfb 36411 filnetlem1 36412 nndivsub 36491 bj-rest10 37122 isbasisrelowllem1 37389 isbasisrelowllem2 37390 fvineqsnf1 37444 wl-2sb6d 37592 curf 37638 curunc 37642 poimirlem26 37686 mblfinlem2 37698 cnambfre 37708 itgaddnclem2 37719 ftc1anclem1 37733 grpokerinj 37933 rngoisoval 38017 smprngopr 38092 parteq12 38814 ax12eq 38980 ax12el 38981 2llnjN 39606 2lplnj 39659 elpadd0 39848 lauteq 40134 lpolconN 41526 f1o2d2 42266 rexrabdioph 42827 tfsnfin 43385 eliunov2 43712 nzss 44350 iotasbc2 44453 or2expropbilem2 47064 elsetpreimafvbi 47422 reuopreuprim 47557 grlicref 48043 cbvmpox2 48367 naryfvalel 48662 line2x 48786 brab2ddw 48860 brab2ddw2 48861 |
| Copyright terms: Public domain | W3C validator |