| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sylan9bb | Structured version Visualization version GIF version | ||
| Description: Nested syllogism inference conjoining dissimilar antecedents. (Contributed by NM, 4-Mar-1995.) |
| Ref | Expression |
|---|---|
| sylan9bb.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| sylan9bb.2 | ⊢ (𝜃 → (𝜒 ↔ 𝜏)) |
| Ref | Expression |
|---|---|
| sylan9bb | ⊢ ((𝜑 ∧ 𝜃) → (𝜓 ↔ 𝜏)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylan9bb.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 2 | 1 | adantr 480 | . 2 ⊢ ((𝜑 ∧ 𝜃) → (𝜓 ↔ 𝜒)) |
| 3 | sylan9bb.2 | . . 3 ⊢ (𝜃 → (𝜒 ↔ 𝜏)) | |
| 4 | 3 | adantl 481 | . 2 ⊢ ((𝜑 ∧ 𝜃) → (𝜒 ↔ 𝜏)) |
| 5 | 2, 4 | bitrd 279 | 1 ⊢ ((𝜑 ∧ 𝜃) → (𝜓 ↔ 𝜏)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: sylan9bbr 510 baibd 539 syl3an9b 1436 nanbi12 1503 elequ12 2127 sbcom2 2174 2sb5rf 2470 2sb6rf 2471 eqeqan12d 2743 eleq12 2818 sbhypfOLD 3511 ceqsrex2v 3624 elabd2 3636 elabgt 3638 sseq12 3974 csbie2df 4406 2ralsng 4642 rexprgf 4659 rextpg 4663 breq12 5112 reusv2lem5 5357 opelopabg 5498 brabg 5499 opelopabgf 5500 opelopab2 5501 rbropapd 5524 poeq12d 5551 soeq12d 5569 freq12d 5607 seeq12d 5610 weeq12d 5627 ralxpf 5810 feq23 6669 f00 6742 fconstg 6747 f1oeq23 6791 f1o00 6835 fnelfp 7149 fnelnfp 7151 isofrlem 7315 f1oiso 7326 riota1a 7366 cbvmpox 7482 caovord 7600 caovord3 7602 f1oweALT 7951 oaordex 8522 oaass 8525 odi 8543 findcard2s 9129 unfilem1 9254 suppeqfsuppbi 9330 oieu 9492 r1pw 9798 carddomi2 9923 isacn 9997 djudom2 10137 axdc2 10402 alephval2 10525 distrlem4pr 10979 axpre-sup 11122 nn0ind-raph 12634 elpq 12934 xnn0xadd0 13207 elfz 13474 elfzp12 13564 expeq0 14057 leiso 14424 wrd2ind 14688 trcleq12lem 14959 dfrtrclrec2 15024 shftfib 15038 absdvdsb 16244 dvdsabsb 16245 dvdsabseq 16283 unbenlem 16879 isprs 18257 isdrs 18262 pltval 18291 lublecllem 18319 istos 18377 isdlat 18481 znfld 21470 tgss2 22874 isopn2 22919 cnpf2 23137 lmbr 23145 isreg2 23264 fclsrest 23911 qustgplem 24008 ustuqtoplem 24127 xmetec 24322 nmogelb 24604 metdstri 24740 tcphcph 25137 ulmval 26289 2lgslem1a 27302 elmade 27779 iscgrg 28439 istrlson 29635 ispthson 29672 isspthson 29673 elwwlks2on 29889 eupth2lem1 30147 eigrei 31763 eigorthi 31766 jplem1 32197 superpos 32283 chrelati 32293 bian1d 32385 br8d 32538 ellpi 33344 issiga 34102 eulerpartlemgvv 34367 cplgredgex 35108 acycgrcycl 35134 br8 35743 br6 35744 br4 35745 brsegle 36096 topfne 36342 tailfb 36365 filnetlem1 36366 nndivsub 36445 bj-rest10 37076 isbasisrelowllem1 37343 isbasisrelowllem2 37344 fvineqsnf1 37398 wl-2sb6d 37546 curf 37592 curunc 37596 poimirlem26 37640 mblfinlem2 37652 cnambfre 37662 itgaddnclem2 37673 ftc1anclem1 37687 grpokerinj 37887 rngoisoval 37971 smprngopr 38046 parteq12 38768 ax12eq 38934 ax12el 38935 2llnjN 39561 2lplnj 39614 elpadd0 39803 lauteq 40089 lpolconN 41481 f1o2d2 42221 rexrabdioph 42782 tfsnfin 43341 eliunov2 43668 nzss 44306 iotasbc2 44409 or2expropbilem2 47034 elsetpreimafvbi 47392 reuopreuprim 47527 grlicref 48004 cbvmpox2 48324 naryfvalel 48619 line2x 48743 brab2ddw 48817 brab2ddw2 48818 |
| Copyright terms: Public domain | W3C validator |