Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sylan9bb | Structured version Visualization version GIF version |
Description: Nested syllogism inference conjoining dissimilar antecedents. (Contributed by NM, 4-Mar-1995.) |
Ref | Expression |
---|---|
sylan9bb.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
sylan9bb.2 | ⊢ (𝜃 → (𝜒 ↔ 𝜏)) |
Ref | Expression |
---|---|
sylan9bb | ⊢ ((𝜑 ∧ 𝜃) → (𝜓 ↔ 𝜏)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylan9bb.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
2 | 1 | adantr 480 | . 2 ⊢ ((𝜑 ∧ 𝜃) → (𝜓 ↔ 𝜒)) |
3 | sylan9bb.2 | . . 3 ⊢ (𝜃 → (𝜒 ↔ 𝜏)) | |
4 | 3 | adantl 481 | . 2 ⊢ ((𝜑 ∧ 𝜃) → (𝜒 ↔ 𝜏)) |
5 | 2, 4 | bitrd 278 | 1 ⊢ ((𝜑 ∧ 𝜃) → (𝜓 ↔ 𝜏)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 |
This theorem is referenced by: sylan9bbr 510 baibd 539 syl3an9b 1432 nanbi12 1495 sbcom2 2163 2sb5rf 2472 2sb6rf 2473 eqeqan12d 2752 eqeq12OLD 2757 eleq12 2828 sbhypf 3481 ceqsrex2v 3580 elabd2 3594 sseq12 3944 csbie2df 4371 2ralsng 4609 rexprgf 4626 rextpg 4632 breq12 5075 reusv2lem5 5320 opelopabg 5444 brabg 5445 opelopabgf 5446 opelopab2 5447 rbropapd 5468 ralxpf 5744 feq23 6568 f00 6640 fconstg 6645 f1oeq23 6691 f1o00 6734 fnelfp 7029 fnelnfp 7031 isofrlem 7191 f1oiso 7202 riota1a 7235 cbvmpox 7346 caovord 7461 caovord3 7463 f1oweALT 7788 oaordex 8351 oaass 8354 odi 8372 findcard2s 8910 unfilem1 9008 suppeqfsuppbi 9072 oieu 9228 r1pw 9534 carddomi2 9659 isacn 9731 djudom2 9870 axdc2 10136 alephval2 10259 fpwwe2cbv 10317 fpwwe2lem2 10319 fpwwecbv 10331 fpwwelem 10332 canthwelem 10337 canthwe 10338 distrlem4pr 10713 axpre-sup 10856 nn0ind-raph 12350 elpq 12644 xnn0xadd0 12910 elfz 13174 elfzp12 13264 expeq0 13741 leiso 14101 wrd2ind 14364 trcleq12lem 14632 dfrtrclrec2 14697 shftfib 14711 absdvdsb 15912 dvdsabsb 15913 dvdsabseq 15950 unbenlem 16537 isprs 17930 isdrs 17934 pltval 17965 lublecllem 17993 istos 18051 isdlat 18155 znfld 20680 tgss2 22045 isopn2 22091 cnpf2 22309 lmbr 22317 isreg2 22436 fclsrest 23083 qustgplem 23180 ustuqtoplem 23299 xmetec 23495 nmogelb 23786 metdstri 23920 tcphcph 24306 ulmval 25444 2lgslem1a 26444 iscgrg 26777 istrlson 27976 ispthson 28011 isspthson 28012 elwwlks2on 28225 eupth2lem1 28483 eigrei 30097 eigorthi 30100 jplem1 30531 superpos 30617 chrelati 30627 br8d 30851 issiga 31980 eulerpartlemgvv 32243 cplgredgex 32982 acycgrcycl 33009 br8 33629 br6 33630 br4 33631 elmade 33978 brsegle 34337 topfne 34470 tailfb 34493 filnetlem1 34494 nndivsub 34573 bj-elequ12 34787 bj-rest10 35186 isbasisrelowllem1 35453 isbasisrelowllem2 35454 fvineqsnf1 35508 wl-2sb6d 35640 curf 35682 curunc 35686 poimirlem26 35730 mblfinlem2 35742 cnambfre 35752 itgaddnclem2 35763 ftc1anclem1 35777 grpokerinj 35978 rngoisoval 36062 smprngopr 36137 ax12eq 36882 ax12el 36883 2llnjN 37508 2lplnj 37561 elpadd0 37750 lauteq 38036 lpolconN 39428 rexrabdioph 40532 eliunov2 41176 nzss 41824 iotasbc2 41927 or2expropbilem2 44414 elsetpreimafvbi 44731 reuopreuprim 44866 cbvmpox2 45559 naryfvalel 45864 line2x 45988 |
Copyright terms: Public domain | W3C validator |