![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sylan9bb | Structured version Visualization version GIF version |
Description: Nested syllogism inference conjoining dissimilar antecedents. (Contributed by NM, 4-Mar-1995.) |
Ref | Expression |
---|---|
sylan9bb.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
sylan9bb.2 | ⊢ (𝜃 → (𝜒 ↔ 𝜏)) |
Ref | Expression |
---|---|
sylan9bb | ⊢ ((𝜑 ∧ 𝜃) → (𝜓 ↔ 𝜏)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylan9bb.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
2 | 1 | adantr 480 | . 2 ⊢ ((𝜑 ∧ 𝜃) → (𝜓 ↔ 𝜒)) |
3 | sylan9bb.2 | . . 3 ⊢ (𝜃 → (𝜒 ↔ 𝜏)) | |
4 | 3 | adantl 481 | . 2 ⊢ ((𝜑 ∧ 𝜃) → (𝜒 ↔ 𝜏)) |
5 | 2, 4 | bitrd 279 | 1 ⊢ ((𝜑 ∧ 𝜃) → (𝜓 ↔ 𝜏)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 |
This theorem is referenced by: sylan9bbr 510 baibd 539 syl3an9b 1433 nanbi12 1500 elequ12 2124 sbcom2 2171 2sb5rf 2475 2sb6rf 2476 eqeqan12d 2749 eqeq12OLD 2754 eleq12 2829 sbhypfOLD 3545 ceqsrex2v 3658 elabd2 3670 sseq12 4023 csbie2df 4449 2ralsng 4683 rexprgf 4700 rextpg 4704 breq12 5153 reusv2lem5 5408 opelopabg 5548 brabg 5549 opelopabgf 5550 opelopab2 5551 rbropapd 5574 poeq12d 5602 soeq12d 5620 freq12d 5658 seeq12d 5661 weeq12d 5678 ralxpf 5860 feq23 6720 f00 6791 fconstg 6796 f1oeq23 6840 f1o00 6884 fnelfp 7195 fnelnfp 7197 isofrlem 7360 f1oiso 7371 riota1a 7410 cbvmpox 7526 caovord 7644 caovord3 7646 f1oweALT 7996 oaordex 8595 oaass 8598 odi 8616 findcard2s 9204 unfilem1 9341 suppeqfsuppbi 9417 oieu 9577 r1pw 9883 carddomi2 10008 isacn 10082 djudom2 10222 axdc2 10487 alephval2 10610 distrlem4pr 11064 axpre-sup 11207 nn0ind-raph 12716 elpq 13015 xnn0xadd0 13286 elfz 13550 elfzp12 13640 expeq0 14130 leiso 14495 wrd2ind 14758 trcleq12lem 15029 dfrtrclrec2 15094 shftfib 15108 absdvdsb 16309 dvdsabsb 16310 dvdsabseq 16347 unbenlem 16942 isprs 18354 isdrs 18359 pltval 18390 lublecllem 18418 istos 18476 isdlat 18580 znfld 21597 tgss2 23010 isopn2 23056 cnpf2 23274 lmbr 23282 isreg2 23401 fclsrest 24048 qustgplem 24145 ustuqtoplem 24264 xmetec 24460 nmogelb 24753 metdstri 24887 tcphcph 25285 ulmval 26438 2lgslem1a 27450 elmade 27921 iscgrg 28535 istrlson 29740 ispthson 29775 isspthson 29776 elwwlks2on 29989 eupth2lem1 30247 eigrei 31863 eigorthi 31866 jplem1 32297 superpos 32383 chrelati 32393 bian1d 32484 br8d 32630 ellpi 33381 issiga 34093 eulerpartlemgvv 34358 cplgredgex 35105 acycgrcycl 35132 br8 35736 br6 35737 br4 35738 brsegle 36090 topfne 36337 tailfb 36360 filnetlem1 36361 nndivsub 36440 bj-rest10 37071 isbasisrelowllem1 37338 isbasisrelowllem2 37339 fvineqsnf1 37393 wl-2sb6d 37539 curf 37585 curunc 37589 poimirlem26 37633 mblfinlem2 37645 cnambfre 37655 itgaddnclem2 37666 ftc1anclem1 37680 grpokerinj 37880 rngoisoval 37964 smprngopr 38039 parteq12 38758 ax12eq 38923 ax12el 38924 2llnjN 39550 2lplnj 39603 elpadd0 39792 lauteq 40078 lpolconN 41470 f1o2d2 42253 rexrabdioph 42782 tfsnfin 43342 eliunov2 43669 nzss 44313 iotasbc2 44416 or2expropbilem2 46983 elsetpreimafvbi 47316 reuopreuprim 47451 grlicref 47908 cbvmpox2 48181 naryfvalel 48480 line2x 48604 |
Copyright terms: Public domain | W3C validator |