| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sylan9bb | Structured version Visualization version GIF version | ||
| Description: Nested syllogism inference conjoining dissimilar antecedents. (Contributed by NM, 4-Mar-1995.) |
| Ref | Expression |
|---|---|
| sylan9bb.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| sylan9bb.2 | ⊢ (𝜃 → (𝜒 ↔ 𝜏)) |
| Ref | Expression |
|---|---|
| sylan9bb | ⊢ ((𝜑 ∧ 𝜃) → (𝜓 ↔ 𝜏)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylan9bb.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 2 | 1 | adantr 480 | . 2 ⊢ ((𝜑 ∧ 𝜃) → (𝜓 ↔ 𝜒)) |
| 3 | sylan9bb.2 | . . 3 ⊢ (𝜃 → (𝜒 ↔ 𝜏)) | |
| 4 | 3 | adantl 481 | . 2 ⊢ ((𝜑 ∧ 𝜃) → (𝜒 ↔ 𝜏)) |
| 5 | 2, 4 | bitrd 279 | 1 ⊢ ((𝜑 ∧ 𝜃) → (𝜓 ↔ 𝜏)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: sylan9bbr 510 baibd 539 syl3an9b 1436 nanbi12 1503 elequ12 2127 sbcom2 2174 2sb5rf 2470 2sb6rf 2471 eqeqan12d 2743 eleq12 2818 sbhypfOLD 3508 ceqsrex2v 3621 elabd2 3633 elabgt 3635 sseq12 3971 csbie2df 4402 2ralsng 4638 rexprgf 4655 rextpg 4659 breq12 5107 reusv2lem5 5352 opelopabg 5493 brabg 5494 opelopabgf 5495 opelopab2 5496 rbropapd 5517 poeq12d 5544 soeq12d 5562 freq12d 5600 seeq12d 5603 weeq12d 5620 ralxpf 5800 feq23 6651 f00 6724 fconstg 6729 f1oeq23 6773 f1o00 6817 fnelfp 7131 fnelnfp 7133 isofrlem 7297 f1oiso 7308 riota1a 7348 cbvmpox 7462 caovord 7580 caovord3 7582 f1oweALT 7930 oaordex 8499 oaass 8502 odi 8520 findcard2s 9106 unfilem1 9230 suppeqfsuppbi 9306 oieu 9468 r1pw 9774 carddomi2 9899 isacn 9973 djudom2 10113 axdc2 10378 alephval2 10501 distrlem4pr 10955 axpre-sup 11098 nn0ind-raph 12610 elpq 12910 xnn0xadd0 13183 elfz 13450 elfzp12 13540 expeq0 14033 leiso 14400 wrd2ind 14664 trcleq12lem 14935 dfrtrclrec2 15000 shftfib 15014 absdvdsb 16220 dvdsabsb 16221 dvdsabseq 16259 unbenlem 16855 isprs 18233 isdrs 18238 pltval 18267 lublecllem 18295 istos 18353 isdlat 18457 znfld 21446 tgss2 22850 isopn2 22895 cnpf2 23113 lmbr 23121 isreg2 23240 fclsrest 23887 qustgplem 23984 ustuqtoplem 24103 xmetec 24298 nmogelb 24580 metdstri 24716 tcphcph 25113 ulmval 26265 2lgslem1a 27278 elmade 27755 iscgrg 28415 istrlson 29608 ispthson 29645 isspthson 29646 elwwlks2on 29862 eupth2lem1 30120 eigrei 31736 eigorthi 31739 jplem1 32170 superpos 32256 chrelati 32266 bian1d 32358 br8d 32511 ellpi 33317 issiga 34075 eulerpartlemgvv 34340 cplgredgex 35081 acycgrcycl 35107 br8 35716 br6 35717 br4 35718 brsegle 36069 topfne 36315 tailfb 36338 filnetlem1 36339 nndivsub 36418 bj-rest10 37049 isbasisrelowllem1 37316 isbasisrelowllem2 37317 fvineqsnf1 37371 wl-2sb6d 37519 curf 37565 curunc 37569 poimirlem26 37613 mblfinlem2 37625 cnambfre 37635 itgaddnclem2 37646 ftc1anclem1 37660 grpokerinj 37860 rngoisoval 37944 smprngopr 38019 parteq12 38741 ax12eq 38907 ax12el 38908 2llnjN 39534 2lplnj 39587 elpadd0 39776 lauteq 40062 lpolconN 41454 f1o2d2 42194 rexrabdioph 42755 tfsnfin 43314 eliunov2 43641 nzss 44279 iotasbc2 44382 or2expropbilem2 47007 elsetpreimafvbi 47365 reuopreuprim 47500 grlicref 47977 cbvmpox2 48297 naryfvalel 48592 line2x 48716 brab2ddw 48790 brab2ddw2 48791 |
| Copyright terms: Public domain | W3C validator |