![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sylan9bb | Structured version Visualization version GIF version |
Description: Nested syllogism inference conjoining dissimilar antecedents. (Contributed by NM, 4-Mar-1995.) |
Ref | Expression |
---|---|
sylan9bb.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
sylan9bb.2 | ⊢ (𝜃 → (𝜒 ↔ 𝜏)) |
Ref | Expression |
---|---|
sylan9bb | ⊢ ((𝜑 ∧ 𝜃) → (𝜓 ↔ 𝜏)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylan9bb.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
2 | 1 | adantr 480 | . 2 ⊢ ((𝜑 ∧ 𝜃) → (𝜓 ↔ 𝜒)) |
3 | sylan9bb.2 | . . 3 ⊢ (𝜃 → (𝜒 ↔ 𝜏)) | |
4 | 3 | adantl 481 | . 2 ⊢ ((𝜑 ∧ 𝜃) → (𝜒 ↔ 𝜏)) |
5 | 2, 4 | bitrd 279 | 1 ⊢ ((𝜑 ∧ 𝜃) → (𝜓 ↔ 𝜏)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 |
This theorem is referenced by: sylan9bbr 510 baibd 539 syl3an9b 1434 nanbi12 1500 elequ12 2126 sbcom2 2174 2sb5rf 2480 2sb6rf 2481 eqeqan12d 2754 eqeq12OLD 2759 eleq12 2834 sbhypfOLD 3557 ceqsrex2v 3671 elabd2 3683 sseq12 4036 csbie2df 4466 2ralsng 4700 rexprgf 4718 rextpg 4724 breq12 5171 reusv2lem5 5420 opelopabg 5557 brabg 5558 opelopabgf 5559 opelopab2 5560 rbropapd 5583 poeq12d 5612 soeq12d 5631 freq12d 5669 seeq12d 5672 weeq12d 5689 ralxpf 5871 feq23 6731 f00 6803 fconstg 6808 f1oeq23 6853 f1o00 6897 fnelfp 7209 fnelnfp 7211 isofrlem 7376 f1oiso 7387 riota1a 7427 cbvmpox 7543 caovord 7661 caovord3 7663 f1oweALT 8013 oaordex 8614 oaass 8617 odi 8635 findcard2s 9231 unfilem1 9371 suppeqfsuppbi 9448 oieu 9608 r1pw 9914 carddomi2 10039 isacn 10113 djudom2 10253 axdc2 10518 alephval2 10641 distrlem4pr 11095 axpre-sup 11238 nn0ind-raph 12743 elpq 13040 xnn0xadd0 13309 elfz 13573 elfzp12 13663 expeq0 14143 leiso 14508 wrd2ind 14771 trcleq12lem 15042 dfrtrclrec2 15107 shftfib 15121 absdvdsb 16323 dvdsabsb 16324 dvdsabseq 16361 unbenlem 16955 isprs 18367 isdrs 18371 pltval 18402 lublecllem 18430 istos 18488 isdlat 18592 znfld 21602 tgss2 23015 isopn2 23061 cnpf2 23279 lmbr 23287 isreg2 23406 fclsrest 24053 qustgplem 24150 ustuqtoplem 24269 xmetec 24465 nmogelb 24758 metdstri 24892 tcphcph 25290 ulmval 26441 2lgslem1a 27453 elmade 27924 iscgrg 28538 istrlson 29743 ispthson 29778 isspthson 29779 elwwlks2on 29992 eupth2lem1 30250 eigrei 31866 eigorthi 31869 jplem1 32300 superpos 32386 chrelati 32396 bian1d 32484 br8d 32632 ellpi 33366 issiga 34076 eulerpartlemgvv 34341 cplgredgex 35088 acycgrcycl 35115 br8 35718 br6 35719 br4 35720 brsegle 36072 topfne 36320 tailfb 36343 filnetlem1 36344 nndivsub 36423 bj-rest10 37054 isbasisrelowllem1 37321 isbasisrelowllem2 37322 fvineqsnf1 37376 wl-2sb6d 37512 curf 37558 curunc 37562 poimirlem26 37606 mblfinlem2 37618 cnambfre 37628 itgaddnclem2 37639 ftc1anclem1 37653 grpokerinj 37853 rngoisoval 37937 smprngopr 38012 parteq12 38732 ax12eq 38897 ax12el 38898 2llnjN 39524 2lplnj 39577 elpadd0 39766 lauteq 40052 lpolconN 41444 f1o2d2 42228 rexrabdioph 42750 tfsnfin 43314 eliunov2 43641 nzss 44286 iotasbc2 44389 or2expropbilem2 46948 elsetpreimafvbi 47265 reuopreuprim 47400 grlicref 47829 cbvmpox2 48060 naryfvalel 48364 line2x 48488 |
Copyright terms: Public domain | W3C validator |