| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sylan9bb | Structured version Visualization version GIF version | ||
| Description: Nested syllogism inference conjoining dissimilar antecedents. (Contributed by NM, 4-Mar-1995.) |
| Ref | Expression |
|---|---|
| sylan9bb.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| sylan9bb.2 | ⊢ (𝜃 → (𝜒 ↔ 𝜏)) |
| Ref | Expression |
|---|---|
| sylan9bb | ⊢ ((𝜑 ∧ 𝜃) → (𝜓 ↔ 𝜏)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylan9bb.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 2 | 1 | adantr 480 | . 2 ⊢ ((𝜑 ∧ 𝜃) → (𝜓 ↔ 𝜒)) |
| 3 | sylan9bb.2 | . . 3 ⊢ (𝜃 → (𝜒 ↔ 𝜏)) | |
| 4 | 3 | adantl 481 | . 2 ⊢ ((𝜑 ∧ 𝜃) → (𝜒 ↔ 𝜏)) |
| 5 | 2, 4 | bitrd 279 | 1 ⊢ ((𝜑 ∧ 𝜃) → (𝜓 ↔ 𝜏)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: sylan9bbr 510 baibd 539 syl3an9b 1436 nanbi12 1503 elequ12 2127 sbcom2 2174 2sb5rf 2477 2sb6rf 2478 eqeqan12d 2750 eleq12 2825 sbhypfOLD 3529 ceqsrex2v 3642 elabd2 3654 sseq12 3991 csbie2df 4423 2ralsng 4659 rexprgf 4676 rextpg 4680 breq12 5129 reusv2lem5 5377 opelopabg 5518 brabg 5519 opelopabgf 5520 opelopab2 5521 rbropapd 5544 poeq12d 5571 soeq12d 5589 freq12d 5628 seeq12d 5631 weeq12d 5648 ralxpf 5831 feq23 6694 f00 6765 fconstg 6770 f1oeq23 6814 f1o00 6858 fnelfp 7172 fnelnfp 7174 isofrlem 7338 f1oiso 7349 riota1a 7389 cbvmpox 7505 caovord 7623 caovord3 7625 f1oweALT 7976 oaordex 8575 oaass 8578 odi 8596 findcard2s 9184 unfilem1 9320 suppeqfsuppbi 9396 oieu 9558 r1pw 9864 carddomi2 9989 isacn 10063 djudom2 10203 axdc2 10468 alephval2 10591 distrlem4pr 11045 axpre-sup 11188 nn0ind-raph 12698 elpq 12996 xnn0xadd0 13268 elfz 13535 elfzp12 13625 expeq0 14115 leiso 14482 wrd2ind 14746 trcleq12lem 15017 dfrtrclrec2 15082 shftfib 15096 absdvdsb 16299 dvdsabsb 16300 dvdsabseq 16337 unbenlem 16933 isprs 18313 isdrs 18318 pltval 18347 lublecllem 18375 istos 18433 isdlat 18537 znfld 21526 tgss2 22930 isopn2 22975 cnpf2 23193 lmbr 23201 isreg2 23320 fclsrest 23967 qustgplem 24064 ustuqtoplem 24183 xmetec 24378 nmogelb 24660 metdstri 24796 tcphcph 25194 ulmval 26346 2lgslem1a 27359 elmade 27836 iscgrg 28496 istrlson 29692 ispthson 29729 isspthson 29730 elwwlks2on 29946 eupth2lem1 30204 eigrei 31820 eigorthi 31823 jplem1 32254 superpos 32340 chrelati 32350 bian1d 32442 br8d 32595 ellpi 33393 issiga 34148 eulerpartlemgvv 34413 cplgredgex 35148 acycgrcycl 35174 br8 35778 br6 35779 br4 35780 brsegle 36131 topfne 36377 tailfb 36400 filnetlem1 36401 nndivsub 36480 bj-rest10 37111 isbasisrelowllem1 37378 isbasisrelowllem2 37379 fvineqsnf1 37433 wl-2sb6d 37581 curf 37627 curunc 37631 poimirlem26 37675 mblfinlem2 37687 cnambfre 37697 itgaddnclem2 37708 ftc1anclem1 37722 grpokerinj 37922 rngoisoval 38006 smprngopr 38081 parteq12 38799 ax12eq 38964 ax12el 38965 2llnjN 39591 2lplnj 39644 elpadd0 39833 lauteq 40119 lpolconN 41511 f1o2d2 42251 rexrabdioph 42792 tfsnfin 43351 eliunov2 43678 nzss 44316 iotasbc2 44419 or2expropbilem2 47042 elsetpreimafvbi 47385 reuopreuprim 47520 grlicref 47997 cbvmpox2 48291 naryfvalel 48590 line2x 48714 brab2ddw 48787 brab2ddw2 48788 |
| Copyright terms: Public domain | W3C validator |