![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sylan9bb | Structured version Visualization version GIF version |
Description: Nested syllogism inference conjoining dissimilar antecedents. (Contributed by NM, 4-Mar-1995.) |
Ref | Expression |
---|---|
sylan9bb.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
sylan9bb.2 | ⊢ (𝜃 → (𝜒 ↔ 𝜏)) |
Ref | Expression |
---|---|
sylan9bb | ⊢ ((𝜑 ∧ 𝜃) → (𝜓 ↔ 𝜏)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylan9bb.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
2 | 1 | adantr 480 | . 2 ⊢ ((𝜑 ∧ 𝜃) → (𝜓 ↔ 𝜒)) |
3 | sylan9bb.2 | . . 3 ⊢ (𝜃 → (𝜒 ↔ 𝜏)) | |
4 | 3 | adantl 481 | . 2 ⊢ ((𝜑 ∧ 𝜃) → (𝜒 ↔ 𝜏)) |
5 | 2, 4 | bitrd 278 | 1 ⊢ ((𝜑 ∧ 𝜃) → (𝜓 ↔ 𝜏)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 |
This theorem is referenced by: sylan9bbr 510 baibd 539 syl3an9b 1433 nanbi12 1500 sbcom2 2160 2sb5rf 2470 2sb6rf 2471 eqeqan12d 2745 eqeq12OLD 2750 eleq12 2822 sbhypfOLD 3539 ceqsrex2v 3647 elabd2 3661 sseq12 4010 csbie2df 4441 2ralsng 4681 rexprgf 4698 rextpg 4704 breq12 5154 reusv2lem5 5401 opelopabg 5539 brabg 5540 opelopabgf 5541 opelopab2 5542 rbropapd 5565 ralxpf 5847 feq23 6702 f00 6774 fconstg 6779 f1oeq23 6825 f1o00 6869 fnelfp 7176 fnelnfp 7178 isofrlem 7340 f1oiso 7351 riota1a 7391 cbvmpox 7505 caovord 7621 caovord3 7623 f1oweALT 7962 oaordex 8561 oaass 8564 odi 8582 findcard2s 9168 unfilem1 9313 suppeqfsuppbi 9380 oieu 9537 r1pw 9843 carddomi2 9968 isacn 10042 djudom2 10181 axdc2 10447 alephval2 10570 fpwwe2cbv 10628 fpwwe2lem2 10630 fpwwecbv 10642 fpwwelem 10643 canthwelem 10648 canthwe 10649 distrlem4pr 11024 axpre-sup 11167 nn0ind-raph 12667 elpq 12964 xnn0xadd0 13231 elfz 13495 elfzp12 13585 expeq0 14063 leiso 14425 wrd2ind 14678 trcleq12lem 14945 dfrtrclrec2 15010 shftfib 15024 absdvdsb 16223 dvdsabsb 16224 dvdsabseq 16261 unbenlem 16846 isprs 18255 isdrs 18259 pltval 18290 lublecllem 18318 istos 18376 isdlat 18480 znfld 21336 tgss2 22711 isopn2 22757 cnpf2 22975 lmbr 22983 isreg2 23102 fclsrest 23749 qustgplem 23846 ustuqtoplem 23965 xmetec 24161 nmogelb 24454 metdstri 24588 tcphcph 24986 ulmval 26125 2lgslem1a 27127 elmade 27596 iscgrg 28027 istrlson 29228 ispthson 29263 isspthson 29264 elwwlks2on 29477 eupth2lem1 29735 eigrei 31351 eigorthi 31354 jplem1 31785 superpos 31871 chrelati 31881 br8d 32103 issiga 33405 eulerpartlemgvv 33670 cplgredgex 34406 acycgrcycl 34433 br8 35027 br6 35028 br4 35029 brsegle 35381 topfne 35543 tailfb 35566 filnetlem1 35567 nndivsub 35646 bj-elequ12 35860 bj-rest10 36273 isbasisrelowllem1 36540 isbasisrelowllem2 36541 fvineqsnf1 36595 wl-2sb6d 36727 curf 36770 curunc 36774 poimirlem26 36818 mblfinlem2 36830 cnambfre 36840 itgaddnclem2 36851 ftc1anclem1 36865 grpokerinj 37065 rngoisoval 37149 smprngopr 37224 parteq12 37950 ax12eq 38115 ax12el 38116 2llnjN 38742 2lplnj 38795 elpadd0 38984 lauteq 39270 lpolconN 40662 f1o2d2 41362 rexrabdioph 41835 tfsnfin 42405 eliunov2 42733 nzss 43379 iotasbc2 43482 or2expropbilem2 46043 elsetpreimafvbi 46359 reuopreuprim 46494 cbvmpox2 47101 naryfvalel 47405 line2x 47529 |
Copyright terms: Public domain | W3C validator |