![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3impa | Structured version Visualization version GIF version |
Description: Importation from double to triple conjunction. (Contributed by NM, 20-Aug-1995.) (Revised to shorten 3imp 1110 by Wolf Lammen, 20-Jun-2022.) |
Ref | Expression |
---|---|
3impa.1 | ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
Ref | Expression |
---|---|
3impa | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-3an 1088 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ ((𝜑 ∧ 𝜓) ∧ 𝜒)) | |
2 | 3impa.1 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) | |
3 | 1, 2 | sylbi 216 | 1 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1086 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-3an 1088 |
This theorem is referenced by: 3imp 1110 3adant1 1129 3adant2 1130 ex3 1345 3impdir 1350 syl3an9b 1433 biimp3a 1468 stoic3 1777 rspec3 3260 rspc3v 3582 raltpg 4644 rextpg 4645 disjiun 5074 otthg 5419 3optocl 5702 fun2ssres 6516 funtpg 6526 funssfv 6833 f1elima 7176 ot1stg 7892 ot2ndg 7893 smogt 8247 omord2 8448 omword 8451 oeword 8471 omabslem 8530 ecovass 8663 fpmg 8706 findcard 9007 endjudisj 10004 cfsmolem 10106 ingru 10651 addasspi 10731 mulasspi 10733 ltapi 10739 ltmpi 10740 axpre-ltadd 11003 leltne 11144 dedekind 11218 recextlem2 11686 divdiv32 11763 divdiv1 11766 lble 12007 fnn0ind 12499 supminf 12755 xrleltne 12959 xrmaxeq 12993 xrmineq 12994 iccgelb 13215 elicc4 13226 iccsplit 13297 elfz 13325 modabs 13704 expgt0 13896 expge0 13899 expge1 13900 mulexpz 13903 expp1z 13912 expm1 13913 expmordi 13965 digit1 14032 faclbnd4 14091 faclbnd5 14092 ccatsymb 14366 s3eqs2s1eq 14730 abssubne0 15107 binom 15621 dvds0lem 16055 dvdsnegb 16062 muldvds1 16069 muldvds2 16070 dvdscmulr 16073 dvdsmulcr 16074 divalgmodcl 16195 gcd2n0cl 16295 gcdaddm 16311 lcmdvds 16390 prmdvdsexp 16497 rpexp1i 16505 monpropd 17526 prfval 17993 xpcpropd 18003 curf2ndf 18042 eqglact 18883 mndodcongi 19227 oddvdsnn0 19228 efgi0 19401 efgi1 19402 efgsval2 19414 lss0cl 20291 mpofrlmd 21067 scmatscmid 21738 pmatcollpw3fi1lem1 22018 cnpval 22470 cnf2 22483 cnnei 22516 lfinun 22759 ptpjcn 22845 cnmptk2 22920 flfval 23224 cnmpt2plusg 23322 cnmpt2vsca 23429 ustincl 23442 xbln0 23650 blssec 23671 blpnfctr 23672 mopni2 23732 mopni3 23733 nmoval 23962 nmocl 23967 isnghm2 23971 isnmhm2 23999 cnmpt2ds 24089 metdseq0 24100 cnmpt2ip 24495 caucfil 24530 mbfimasn 24879 dvnf 25174 dvnbss 25175 coemul 25496 dvply1 25527 dvnply2 25530 pserdvlem2 25670 logeftb 25822 advlogexp 25893 cxpne0 25915 cxpp1 25918 elno2 26885 f1otrg 27368 ax5seglem9 27441 uhgrn0 27573 upgrn0 27595 upgrle 27596 uhgrwkspthlem2 28258 frgrhash2wsp 28832 sspval 29221 sspnval 29235 lnof 29253 nmooval 29261 nmooge0 29265 nmoub3i 29271 bloln 29282 nmblore 29284 hosval 30238 homval 30239 hodval 30240 hfsval 30241 hfmval 30242 homulass 30300 hoadddir 30302 nmopub2tALT 30407 nmfnleub2 30424 kbval 30452 lnopmul 30465 0lnfn 30483 lnopcoi 30501 nmcoplb 30528 nmcfnlb 30552 kbass2 30615 nmopleid 30637 hstoh 30730 mdi 30793 dmdi 30800 dmdi4 30805 fdifsuppconst 31158 supxrnemnf 31226 reofld 31682 nsgmgclem 31735 rhmimaidl 31748 lbsdiflsp0 31847 zarclsun 31960 zarclsint 31962 bnj605 33026 bnj607 33035 bnj1097 33100 fnrelpredd 33200 cusgredgex 33222 topdifinffinlem 35590 lindsdom 35843 lindsenlbs 35844 ftc1anclem2 35923 fzmul 35971 nninfnub 35981 exidreslem 36107 grposnOLD 36112 ghomf 36120 rngohomf 36196 rngohom1 36198 rngohomadd 36199 rngohommul 36200 rngoiso1o 36209 rngoisohom 36210 igenmin 36294 lkrcl 37326 lkrf0 37327 omlfh1N 37492 tendoex 39210 uzindd 40206 sticksstones3 40328 sticksstones10 40335 sticksstones12a 40337 sticksstones12 40338 sticksstones17 40343 3anrabdioph 40820 3orrabdioph 40821 rencldnfilem 40858 dvdsabsmod0 41026 jm2.18 41027 jm2.25 41038 jm2.15nn0 41042 addrfv 42321 subrfv 42322 mulvfv 42323 bi3impa 42338 ssfiunibd 43097 supminfxr 43253 limsupgtlem 43568 xlimmnfv 43625 xlimpnfv 43629 dvnmul 43734 stoweidlem34 43825 stoweidlem48 43839 sge0cl 44170 sge0xp 44218 ovnsubaddlem1 44359 aovmpt4g 44958 gboge9 45481 |
Copyright terms: Public domain | W3C validator |