Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 3impa | Structured version Visualization version GIF version |
Description: Importation from double to triple conjunction. (Contributed by NM, 20-Aug-1995.) (Revised to shorten 3imp 1110 by Wolf Lammen, 20-Jun-2022.) |
Ref | Expression |
---|---|
3impa.1 | ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
Ref | Expression |
---|---|
3impa | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-3an 1088 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ ((𝜑 ∧ 𝜓) ∧ 𝜒)) | |
2 | 3impa.1 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) | |
3 | 1, 2 | sylbi 216 | 1 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1086 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-3an 1088 |
This theorem is referenced by: 3imp 1110 3adant1 1129 3adant2 1130 ex3 1345 3impdir 1350 syl3an9b 1433 biimp3a 1468 stoic3 1779 rspec3 3138 rspc3v 3574 raltpg 4635 rextpg 4636 disjiun 5062 otthg 5401 3optocl 5684 fun2ssres 6486 funtpg 6496 funssfv 6804 f1elima 7145 ot1stg 7854 ot2ndg 7855 smogt 8207 omord2 8407 omword 8410 oeword 8430 omabslem 8489 ecovass 8622 fpmg 8665 findcard 8955 endjudisj 9933 cfsmolem 10035 ingru 10580 addasspi 10660 mulasspi 10662 ltapi 10668 ltmpi 10669 axpre-ltadd 10932 leltne 11073 dedekind 11147 recextlem2 11615 divdiv32 11692 divdiv1 11695 lble 11936 fnn0ind 12428 supminf 12684 xrleltne 12888 xrmaxeq 12922 xrmineq 12923 iccgelb 13144 elicc4 13155 iccsplit 13226 elfz 13254 modabs 13633 expgt0 13825 expge0 13828 expge1 13829 mulexpz 13832 expp1z 13841 expm1 13842 expmordi 13894 digit1 13961 faclbnd4 14020 faclbnd5 14021 ccatsymb 14296 s3eqs2s1eq 14660 abssubne0 15037 binom 15551 dvds0lem 15985 dvdsnegb 15992 muldvds1 15999 muldvds2 16000 dvdscmulr 16003 dvdsmulcr 16004 divalgmodcl 16125 gcd2n0cl 16225 gcdaddm 16241 lcmdvds 16322 prmdvdsexp 16429 rpexp1i 16437 monpropd 17458 prfval 17925 xpcpropd 17935 curf2ndf 17974 eqglact 18816 mndodcongi 19160 oddvdsnn0 19161 efgi0 19335 efgi1 19336 efgsval2 19348 lss0cl 20217 mpofrlmd 20993 scmatscmid 21664 pmatcollpw3fi1lem1 21944 cnpval 22396 cnf2 22409 cnnei 22442 lfinun 22685 ptpjcn 22771 cnmptk2 22846 flfval 23150 cnmpt2plusg 23248 cnmpt2vsca 23355 ustincl 23368 xbln0 23576 blssec 23597 blpnfctr 23598 mopni2 23658 mopni3 23659 nmoval 23888 nmocl 23893 isnghm2 23897 isnmhm2 23925 cnmpt2ds 24015 metdseq0 24026 cnmpt2ip 24421 caucfil 24456 mbfimasn 24805 dvnf 25100 dvnbss 25101 coemul 25422 dvply1 25453 dvnply2 25456 pserdvlem2 25596 logeftb 25748 advlogexp 25819 cxpne0 25841 cxpp1 25844 f1otrg 27241 ax5seglem9 27314 uhgrn0 27446 upgrn0 27468 upgrle 27469 uhgrwkspthlem2 28131 frgrhash2wsp 28705 sspval 29094 sspnval 29108 lnof 29126 nmooval 29134 nmooge0 29138 nmoub3i 29144 bloln 29155 nmblore 29157 hosval 30111 homval 30112 hodval 30113 hfsval 30114 hfmval 30115 homulass 30173 hoadddir 30175 nmopub2tALT 30280 nmfnleub2 30297 kbval 30325 lnopmul 30338 0lnfn 30356 lnopcoi 30374 nmcoplb 30401 nmcfnlb 30425 kbass2 30488 nmopleid 30510 hstoh 30603 mdi 30666 dmdi 30673 dmdi4 30678 fdifsuppconst 31032 supxrnemnf 31100 reofld 31553 nsgmgclem 31605 rhmimaidl 31618 lbsdiflsp0 31716 zarclsun 31829 zarclsint 31831 bnj605 32896 bnj607 32905 bnj1097 32970 fnrelpredd 33070 cusgredgex 33092 elno2 33866 topdifinffinlem 35527 lindsdom 35780 lindsenlbs 35781 ftc1anclem2 35860 fzmul 35908 nninfnub 35918 exidreslem 36044 grposnOLD 36049 ghomf 36057 rngohomf 36133 rngohom1 36135 rngohomadd 36136 rngohommul 36137 rngoiso1o 36146 rngoisohom 36147 igenmin 36231 lkrcl 37113 lkrf0 37114 omlfh1N 37279 tendoex 38996 uzindd 39992 sticksstones3 40111 sticksstones10 40118 sticksstones12a 40120 sticksstones12 40121 sticksstones17 40126 3anrabdioph 40611 3orrabdioph 40612 rencldnfilem 40649 dvdsabsmod0 40816 jm2.18 40817 jm2.25 40828 jm2.15nn0 40832 addrfv 42094 subrfv 42095 mulvfv 42096 bi3impa 42111 ssfiunibd 42855 supminfxr 43011 limsupgtlem 43325 xlimmnfv 43382 xlimpnfv 43386 dvnmul 43491 stoweidlem34 43582 stoweidlem48 43596 sge0cl 43926 sge0xp 43974 ovnsubaddlem1 44115 aovmpt4g 44704 gboge9 45227 |
Copyright terms: Public domain | W3C validator |