Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 3impa | Structured version Visualization version GIF version |
Description: Importation from double to triple conjunction. (Contributed by NM, 20-Aug-1995.) (Revised to shorten 3imp 1109 by Wolf Lammen, 20-Jun-2022.) |
Ref | Expression |
---|---|
3impa.1 | ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
Ref | Expression |
---|---|
3impa | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-3an 1087 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ ((𝜑 ∧ 𝜓) ∧ 𝜒)) | |
2 | 3impa.1 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) | |
3 | 1, 2 | sylbi 216 | 1 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-3an 1087 |
This theorem is referenced by: 3imp 1109 3adant1 1128 3adant2 1129 ex3 1344 3impdir 1349 syl3an9b 1432 biimp3a 1467 stoic3 1780 rspec3 3135 rspc3v 3565 raltpg 4631 rextpg 4632 disjiun 5057 otthg 5394 3optocl 5673 fun2ssres 6463 funtpg 6473 funssfv 6777 f1elima 7117 ot1stg 7818 ot2ndg 7819 smogt 8169 omord2 8360 omword 8363 oeword 8383 omabslem 8440 ecovass 8571 fpmg 8614 findcard 8908 endjudisj 9855 cfsmolem 9957 ingru 10502 addasspi 10582 mulasspi 10584 ltapi 10590 ltmpi 10591 axpre-ltadd 10854 leltne 10995 dedekind 11068 recextlem2 11536 divdiv32 11613 divdiv1 11616 lble 11857 fnn0ind 12349 supminf 12604 xrleltne 12808 xrmaxeq 12842 xrmineq 12843 iccgelb 13064 elicc4 13075 iccsplit 13146 elfz 13174 modabs 13552 expgt0 13744 expge0 13747 expge1 13748 mulexpz 13751 expp1z 13760 expm1 13761 expmordi 13813 digit1 13880 faclbnd4 13939 faclbnd5 13940 ccatsymb 14215 s3eqs2s1eq 14579 abssubne0 14956 binom 15470 dvds0lem 15904 dvdsnegb 15911 muldvds1 15918 muldvds2 15919 dvdscmulr 15922 dvdsmulcr 15923 divalgmodcl 16044 gcd2n0cl 16144 gcdaddm 16160 lcmdvds 16241 prmdvdsexp 16348 rpexp1i 16356 monpropd 17366 prfval 17832 xpcpropd 17842 curf2ndf 17881 eqglact 18722 mndodcongi 19066 oddvdsnn0 19067 efgi0 19241 efgi1 19242 efgsval2 19254 lss0cl 20123 mpofrlmd 20894 scmatscmid 21563 pmatcollpw3fi1lem1 21843 cnpval 22295 cnf2 22308 cnnei 22341 lfinun 22584 ptpjcn 22670 cnmptk2 22745 flfval 23049 cnmpt2plusg 23147 cnmpt2vsca 23254 ustincl 23267 xbln0 23475 blssec 23496 blpnfctr 23497 mopni2 23555 mopni3 23556 nmoval 23785 nmocl 23790 isnghm2 23794 isnmhm2 23822 cnmpt2ds 23912 metdseq0 23923 cnmpt2ip 24317 caucfil 24352 mbfimasn 24701 dvnf 24996 dvnbss 24997 coemul 25318 dvply1 25349 dvnply2 25352 pserdvlem2 25492 logeftb 25644 advlogexp 25715 cxpne0 25737 cxpp1 25740 f1otrg 27136 ax5seglem9 27208 uhgrn0 27340 upgrn0 27362 upgrle 27363 uhgrwkspthlem2 28023 frgrhash2wsp 28597 sspval 28986 sspnval 29000 lnof 29018 nmooval 29026 nmooge0 29030 nmoub3i 29036 bloln 29047 nmblore 29049 hosval 30003 homval 30004 hodval 30005 hfsval 30006 hfmval 30007 homulass 30065 hoadddir 30067 nmopub2tALT 30172 nmfnleub2 30189 kbval 30217 lnopmul 30230 0lnfn 30248 lnopcoi 30266 nmcoplb 30293 nmcfnlb 30317 kbass2 30380 nmopleid 30402 hstoh 30495 mdi 30558 dmdi 30565 dmdi4 30570 fdifsuppconst 30925 supxrnemnf 30993 reofld 31446 nsgmgclem 31498 rhmimaidl 31511 lbsdiflsp0 31609 zarclsun 31722 zarclsint 31724 bnj605 32787 bnj607 32796 bnj1097 32861 fnrelpredd 32961 cusgredgex 32983 elno2 33784 topdifinffinlem 35445 lindsdom 35698 lindsenlbs 35699 ftc1anclem2 35778 fzmul 35826 nninfnub 35836 exidreslem 35962 grposnOLD 35967 ghomf 35975 rngohomf 36051 rngohom1 36053 rngohomadd 36054 rngohommul 36055 rngoiso1o 36064 rngoisohom 36065 igenmin 36149 lkrcl 37033 lkrf0 37034 omlfh1N 37199 tendoex 38916 uzindd 39913 sticksstones3 40032 sticksstones10 40039 sticksstones12a 40041 sticksstones12 40042 sticksstones17 40047 3anrabdioph 40520 3orrabdioph 40521 rencldnfilem 40558 dvdsabsmod0 40725 jm2.18 40726 jm2.25 40737 jm2.15nn0 40741 addrfv 41976 subrfv 41977 mulvfv 41978 bi3impa 41993 ssfiunibd 42738 supminfxr 42894 limsupgtlem 43208 xlimmnfv 43265 xlimpnfv 43269 dvnmul 43374 stoweidlem34 43465 stoweidlem48 43479 sge0cl 43809 sge0xp 43857 ovnsubaddlem1 43998 aovmpt4g 44580 gboge9 45104 |
Copyright terms: Public domain | W3C validator |