![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3impa | Structured version Visualization version GIF version |
Description: Importation from double to triple conjunction. (Contributed by NM, 20-Aug-1995.) (Revised to shorten 3imp 1112 by Wolf Lammen, 20-Jun-2022.) |
Ref | Expression |
---|---|
3impa.1 | ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
Ref | Expression |
---|---|
3impa | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-3an 1090 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ ((𝜑 ∧ 𝜓) ∧ 𝜒)) | |
2 | 3impa.1 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) | |
3 | 1, 2 | sylbi 216 | 1 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 ∧ w3a 1088 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-3an 1090 |
This theorem is referenced by: 3imp 1112 3adant1 1131 3adant2 1132 ex3 1347 3impdir 1352 syl3an9b 1435 biimp3a 1470 stoic3 1779 rspec3 3278 rspc3v 3628 raltpg 4703 rextpg 4704 disjiun 5136 otthg 5486 3optocl 5773 fun2ssres 6594 funtpg 6604 funssfv 6913 f1elima 7262 ot1stg 7989 ot2ndg 7990 smogt 8367 omord2 8567 omword 8570 oeword 8590 omabslem 8649 ecovass 8818 fpmg 8862 findcard 9163 endjudisj 10163 cfsmolem 10265 ingru 10810 addasspi 10890 mulasspi 10892 ltapi 10898 ltmpi 10899 axpre-ltadd 11162 leltne 11303 dedekind 11377 recextlem2 11845 divdiv32 11922 divdiv1 11925 lble 12166 fnn0ind 12661 supminf 12919 xrleltne 13124 xrmaxeq 13158 xrmineq 13159 iccgelb 13380 elicc4 13391 iccsplit 13462 elfz 13490 modabs 13869 expgt0 14061 expge0 14064 expge1 14065 mulexpz 14068 expp1z 14077 expm1 14078 expmordi 14132 digit1 14200 faclbnd4 14257 faclbnd5 14258 ccatsymb 14532 s3eqs2s1eq 14889 abssubne0 15263 binom 15776 dvds0lem 16210 dvdsnegb 16217 muldvds1 16224 muldvds2 16225 dvdscmulr 16228 dvdsmulcr 16229 divalgmodcl 16350 gcd2n0cl 16450 gcdaddm 16466 lcmdvds 16545 prmdvdsexp 16652 rpexp1i 16660 monpropd 17684 prfval 18151 xpcpropd 18161 curf2ndf 18200 eqglact 19059 mndodcongi 19411 oddvdsnn0 19412 efgi0 19588 efgi1 19589 efgsval2 19601 lss0cl 20557 mpofrlmd 21332 scmatscmid 22008 pmatcollpw3fi1lem1 22288 cnpval 22740 cnf2 22753 cnnei 22786 lfinun 23029 ptpjcn 23115 cnmptk2 23190 flfval 23494 cnmpt2plusg 23592 cnmpt2vsca 23699 ustincl 23712 xbln0 23920 blssec 23941 blpnfctr 23942 mopni2 24002 mopni3 24003 nmoval 24232 nmocl 24237 isnghm2 24241 isnmhm2 24269 cnmpt2ds 24359 metdseq0 24370 cnmpt2ip 24765 caucfil 24800 mbfimasn 25149 dvnf 25444 dvnbss 25445 coemul 25766 dvply1 25797 dvnply2 25800 pserdvlem2 25940 logeftb 26092 advlogexp 26163 cxpne0 26185 cxpp1 26188 elno2 27157 f1otrg 28122 ax5seglem9 28195 uhgrn0 28327 upgrn0 28349 upgrle 28350 uhgrwkspthlem2 29011 frgrhash2wsp 29585 sspval 29976 sspnval 29990 lnof 30008 nmooval 30016 nmooge0 30020 nmoub3i 30026 bloln 30037 nmblore 30039 hosval 30993 homval 30994 hodval 30995 hfsval 30996 hfmval 30997 homulass 31055 hoadddir 31057 nmopub2tALT 31162 nmfnleub2 31179 kbval 31207 lnopmul 31220 0lnfn 31238 lnopcoi 31256 nmcoplb 31283 nmcfnlb 31307 kbass2 31370 nmopleid 31392 hstoh 31485 mdi 31548 dmdi 31555 dmdi4 31560 fdifsuppconst 31911 supxrnemnf 31981 reofld 32459 nsgmgclem 32522 ghmqusker 32532 rhmimaidl 32550 evls1fpws 32646 lbsdiflsp0 32711 zarclsun 32850 zarclsint 32852 bnj605 33918 bnj607 33927 bnj1097 33992 fnrelpredd 34092 cusgredgex 34112 topdifinffinlem 36228 lindsdom 36482 lindsenlbs 36483 ftc1anclem2 36562 fzmul 36609 nninfnub 36619 exidreslem 36745 grposnOLD 36750 ghomf 36758 rngohomf 36834 rngohom1 36836 rngohomadd 36837 rngohommul 36838 rngoiso1o 36847 rngoisohom 36848 igenmin 36932 lkrcl 37962 lkrf0 37963 omlfh1N 38128 tendoex 39846 uzindd 40842 sticksstones3 40964 sticksstones10 40971 sticksstones12a 40973 sticksstones12 40974 sticksstones17 40979 3anrabdioph 41520 3orrabdioph 41521 rencldnfilem 41558 dvdsabsmod0 41726 jm2.18 41727 jm2.25 41738 jm2.15nn0 41742 tfsconcatlem 42086 onsucunitp 42123 addrfv 43228 subrfv 43229 mulvfv 43230 bi3impa 43245 ssfiunibd 44019 supminfxr 44174 limsupgtlem 44493 xlimmnfv 44550 xlimpnfv 44554 dvnmul 44659 stoweidlem34 44750 stoweidlem48 44764 sge0cl 45097 sge0xp 45145 ovnsubaddlem1 45286 aovmpt4g 45909 gboge9 46432 |
Copyright terms: Public domain | W3C validator |