| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3orbi123d | Structured version Visualization version GIF version | ||
| Description: Deduction joining 3 equivalences to form equivalence of disjunctions. (Contributed by NM, 20-Apr-1994.) |
| Ref | Expression |
|---|---|
| bi3d.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| bi3d.2 | ⊢ (𝜑 → (𝜃 ↔ 𝜏)) |
| bi3d.3 | ⊢ (𝜑 → (𝜂 ↔ 𝜁)) |
| Ref | Expression |
|---|---|
| 3orbi123d | ⊢ (𝜑 → ((𝜓 ∨ 𝜃 ∨ 𝜂) ↔ (𝜒 ∨ 𝜏 ∨ 𝜁))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bi3d.1 | . . . 4 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 2 | bi3d.2 | . . . 4 ⊢ (𝜑 → (𝜃 ↔ 𝜏)) | |
| 3 | 1, 2 | orbi12d 918 | . . 3 ⊢ (𝜑 → ((𝜓 ∨ 𝜃) ↔ (𝜒 ∨ 𝜏))) |
| 4 | bi3d.3 | . . 3 ⊢ (𝜑 → (𝜂 ↔ 𝜁)) | |
| 5 | 3, 4 | orbi12d 918 | . 2 ⊢ (𝜑 → (((𝜓 ∨ 𝜃) ∨ 𝜂) ↔ ((𝜒 ∨ 𝜏) ∨ 𝜁))) |
| 6 | df-3or 1087 | . 2 ⊢ ((𝜓 ∨ 𝜃 ∨ 𝜂) ↔ ((𝜓 ∨ 𝜃) ∨ 𝜂)) | |
| 7 | df-3or 1087 | . 2 ⊢ ((𝜒 ∨ 𝜏 ∨ 𝜁) ↔ ((𝜒 ∨ 𝜏) ∨ 𝜁)) | |
| 8 | 5, 6, 7 | 3bitr4g 314 | 1 ⊢ (𝜑 → ((𝜓 ∨ 𝜃 ∨ 𝜂) ↔ (𝜒 ∨ 𝜏 ∨ 𝜁))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∨ wo 847 ∨ w3o 1085 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-or 848 df-3or 1087 |
| This theorem is referenced by: moeq3 3683 soeq1 5567 solin 5573 soinxp 5720 ordtri3or 6364 isosolem 7322 sorpssi 7705 dfwe2 7750 f1oweALT 7951 soxp 8108 frxp3 8130 xpord3inddlem 8133 elfiun 9381 sornom 10230 ltsopr 10985 elz 12531 dyaddisj 25497 istrkgl 28385 istrkgld 28386 axtgupdim2 28398 tgdim01 28434 tglngval 28478 tgellng 28480 colcom 28485 colrot1 28486 legso 28526 lncom 28549 lnrot1 28550 lnrot2 28551 ttgval 28802 colinearalg 28837 axlowdim2 28887 axlowdim 28888 elntg 28911 elntg2 28912 nb3grprlem2 29308 frgrwopreg 30252 constrsuc 33728 constrcbvlem 33745 istrkg2d 34657 axtgupdim2ALTV 34659 brcolinear2 36046 colineardim1 36049 colinearperm1 36050 fin2so 37601 uneqsn 44014 3orbi123 44501 gpgov 48033 gpgiedgdmel 48040 gpgedgel 48041 gpgedgvtx0 48052 gpgedgvtx1 48053 gpgedgiov 48056 gpgedg2ov 48057 gpgedg2iv 48058 gpg3kgrtriexlem6 48079 gpgprismgr4cycllem3 48087 gpgprismgr4cycllem10 48094 pgnbgreunbgrlem1 48103 pgnbgreunbgrlem4 48109 pgnbgreunbgrlem5 48113 |
| Copyright terms: Public domain | W3C validator |