![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3orbi123d | Structured version Visualization version GIF version |
Description: Deduction joining 3 equivalences to form equivalence of disjunctions. (Contributed by NM, 20-Apr-1994.) |
Ref | Expression |
---|---|
bi3d.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
bi3d.2 | ⊢ (𝜑 → (𝜃 ↔ 𝜏)) |
bi3d.3 | ⊢ (𝜑 → (𝜂 ↔ 𝜁)) |
Ref | Expression |
---|---|
3orbi123d | ⊢ (𝜑 → ((𝜓 ∨ 𝜃 ∨ 𝜂) ↔ (𝜒 ∨ 𝜏 ∨ 𝜁))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bi3d.1 | . . . 4 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
2 | bi3d.2 | . . . 4 ⊢ (𝜑 → (𝜃 ↔ 𝜏)) | |
3 | 1, 2 | orbi12d 917 | . . 3 ⊢ (𝜑 → ((𝜓 ∨ 𝜃) ↔ (𝜒 ∨ 𝜏))) |
4 | bi3d.3 | . . 3 ⊢ (𝜑 → (𝜂 ↔ 𝜁)) | |
5 | 3, 4 | orbi12d 917 | . 2 ⊢ (𝜑 → (((𝜓 ∨ 𝜃) ∨ 𝜂) ↔ ((𝜒 ∨ 𝜏) ∨ 𝜁))) |
6 | df-3or 1088 | . 2 ⊢ ((𝜓 ∨ 𝜃 ∨ 𝜂) ↔ ((𝜓 ∨ 𝜃) ∨ 𝜂)) | |
7 | df-3or 1088 | . 2 ⊢ ((𝜒 ∨ 𝜏 ∨ 𝜁) ↔ ((𝜒 ∨ 𝜏) ∨ 𝜁)) | |
8 | 5, 6, 7 | 3bitr4g 314 | 1 ⊢ (𝜑 → ((𝜓 ∨ 𝜃 ∨ 𝜂) ↔ (𝜒 ∨ 𝜏 ∨ 𝜁))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∨ wo 846 ∨ w3o 1086 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-or 847 df-3or 1088 |
This theorem is referenced by: moeq3 3734 soeq1 5629 solin 5634 soinxp 5781 ordtri3or 6427 isosolem 7383 sorpssi 7764 dfwe2 7809 f1oweALT 8013 soxp 8170 frxp3 8192 xpord3inddlem 8195 elfiun 9499 sornom 10346 ltsopr 11101 elz 12641 dyaddisj 25650 istrkgl 28484 istrkgld 28485 axtgupdim2 28497 tgdim01 28533 tglngval 28577 tgellng 28579 colcom 28584 colrot1 28585 legso 28625 lncom 28648 lnrot1 28649 lnrot2 28650 ttgval 28901 ttgvalOLD 28902 colinearalg 28943 axlowdim2 28993 axlowdim 28994 elntg 29017 elntg2 29018 nb3grprlem2 29416 frgrwopreg 30355 constrsuc 33728 istrkg2d 34643 axtgupdim2ALTV 34645 brcolinear2 36022 colineardim1 36025 colinearperm1 36026 fin2so 37567 uneqsn 43987 3orbi123 44482 |
Copyright terms: Public domain | W3C validator |