| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3orbi123d | Structured version Visualization version GIF version | ||
| Description: Deduction joining 3 equivalences to form equivalence of disjunctions. (Contributed by NM, 20-Apr-1994.) |
| Ref | Expression |
|---|---|
| bi3d.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| bi3d.2 | ⊢ (𝜑 → (𝜃 ↔ 𝜏)) |
| bi3d.3 | ⊢ (𝜑 → (𝜂 ↔ 𝜁)) |
| Ref | Expression |
|---|---|
| 3orbi123d | ⊢ (𝜑 → ((𝜓 ∨ 𝜃 ∨ 𝜂) ↔ (𝜒 ∨ 𝜏 ∨ 𝜁))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bi3d.1 | . . . 4 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 2 | bi3d.2 | . . . 4 ⊢ (𝜑 → (𝜃 ↔ 𝜏)) | |
| 3 | 1, 2 | orbi12d 918 | . . 3 ⊢ (𝜑 → ((𝜓 ∨ 𝜃) ↔ (𝜒 ∨ 𝜏))) |
| 4 | bi3d.3 | . . 3 ⊢ (𝜑 → (𝜂 ↔ 𝜁)) | |
| 5 | 3, 4 | orbi12d 918 | . 2 ⊢ (𝜑 → (((𝜓 ∨ 𝜃) ∨ 𝜂) ↔ ((𝜒 ∨ 𝜏) ∨ 𝜁))) |
| 6 | df-3or 1087 | . 2 ⊢ ((𝜓 ∨ 𝜃 ∨ 𝜂) ↔ ((𝜓 ∨ 𝜃) ∨ 𝜂)) | |
| 7 | df-3or 1087 | . 2 ⊢ ((𝜒 ∨ 𝜏 ∨ 𝜁) ↔ ((𝜒 ∨ 𝜏) ∨ 𝜁)) | |
| 8 | 5, 6, 7 | 3bitr4g 314 | 1 ⊢ (𝜑 → ((𝜓 ∨ 𝜃 ∨ 𝜂) ↔ (𝜒 ∨ 𝜏 ∨ 𝜁))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∨ wo 847 ∨ w3o 1085 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-or 848 df-3or 1087 |
| This theorem is referenced by: moeq3 3695 soeq1 5582 solin 5588 soinxp 5736 ordtri3or 6384 isosolem 7340 sorpssi 7723 dfwe2 7768 f1oweALT 7971 soxp 8128 frxp3 8150 xpord3inddlem 8153 elfiun 9442 sornom 10291 ltsopr 11046 elz 12590 dyaddisj 25549 istrkgl 28437 istrkgld 28438 axtgupdim2 28450 tgdim01 28486 tglngval 28530 tgellng 28532 colcom 28537 colrot1 28538 legso 28578 lncom 28601 lnrot1 28602 lnrot2 28603 ttgval 28854 colinearalg 28889 axlowdim2 28939 axlowdim 28940 elntg 28963 elntg2 28964 nb3grprlem2 29360 frgrwopreg 30304 constrsuc 33772 constrcbvlem 33789 istrkg2d 34698 axtgupdim2ALTV 34700 brcolinear2 36076 colineardim1 36079 colinearperm1 36080 fin2so 37631 uneqsn 44049 3orbi123 44536 gpgov 48046 gpgiedgdmel 48053 gpgedgel 48054 gpgedgvtx0 48065 gpgedgvtx1 48066 gpg3kgrtriexlem6 48090 gpgprismgr4cycllem3 48096 gpgprismgr4cycllem10 48103 |
| Copyright terms: Public domain | W3C validator |