Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 3orbi123d | Structured version Visualization version GIF version |
Description: Deduction joining 3 equivalences to form equivalence of disjunctions. (Contributed by NM, 20-Apr-1994.) |
Ref | Expression |
---|---|
bi3d.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
bi3d.2 | ⊢ (𝜑 → (𝜃 ↔ 𝜏)) |
bi3d.3 | ⊢ (𝜑 → (𝜂 ↔ 𝜁)) |
Ref | Expression |
---|---|
3orbi123d | ⊢ (𝜑 → ((𝜓 ∨ 𝜃 ∨ 𝜂) ↔ (𝜒 ∨ 𝜏 ∨ 𝜁))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bi3d.1 | . . . 4 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
2 | bi3d.2 | . . . 4 ⊢ (𝜑 → (𝜃 ↔ 𝜏)) | |
3 | 1, 2 | orbi12d 916 | . . 3 ⊢ (𝜑 → ((𝜓 ∨ 𝜃) ↔ (𝜒 ∨ 𝜏))) |
4 | bi3d.3 | . . 3 ⊢ (𝜑 → (𝜂 ↔ 𝜁)) | |
5 | 3, 4 | orbi12d 916 | . 2 ⊢ (𝜑 → (((𝜓 ∨ 𝜃) ∨ 𝜂) ↔ ((𝜒 ∨ 𝜏) ∨ 𝜁))) |
6 | df-3or 1087 | . 2 ⊢ ((𝜓 ∨ 𝜃 ∨ 𝜂) ↔ ((𝜓 ∨ 𝜃) ∨ 𝜂)) | |
7 | df-3or 1087 | . 2 ⊢ ((𝜒 ∨ 𝜏 ∨ 𝜁) ↔ ((𝜒 ∨ 𝜏) ∨ 𝜁)) | |
8 | 5, 6, 7 | 3bitr4g 314 | 1 ⊢ (𝜑 → ((𝜓 ∨ 𝜃 ∨ 𝜂) ↔ (𝜒 ∨ 𝜏 ∨ 𝜁))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∨ wo 844 ∨ w3o 1085 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-or 845 df-3or 1087 |
This theorem is referenced by: moeq3 3648 soeq1 5521 solin 5525 soinxp 5665 ordtri3or 6293 isosolem 7212 sorpssi 7574 dfwe2 7616 f1oweALT 7806 soxp 7959 elfiun 9178 sornom 10022 ltsopr 10777 elz 12310 dyaddisj 24749 istrkgl 26808 istrkgld 26809 axtgupdim2 26821 tgdim01 26857 tglngval 26901 tgellng 26903 colcom 26908 colrot1 26909 legso 26949 lncom 26972 lnrot1 26973 lnrot2 26974 ttgval 27225 ttgvalOLD 27226 colinearalg 27267 axlowdim2 27317 axlowdim 27318 elntg 27341 elntg2 27342 nb3grprlem2 27737 frgrwopreg 28674 istrkg2d 32633 axtgupdim2ALTV 32635 xpord3ind 33787 brcolinear2 34347 colineardim1 34350 colinearperm1 34351 fin2so 35751 uneqsn 41593 3orbi123 42091 |
Copyright terms: Public domain | W3C validator |