![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3orbi123d | Structured version Visualization version GIF version |
Description: Deduction joining 3 equivalences to form equivalence of disjunctions. (Contributed by NM, 20-Apr-1994.) |
Ref | Expression |
---|---|
bi3d.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
bi3d.2 | ⊢ (𝜑 → (𝜃 ↔ 𝜏)) |
bi3d.3 | ⊢ (𝜑 → (𝜂 ↔ 𝜁)) |
Ref | Expression |
---|---|
3orbi123d | ⊢ (𝜑 → ((𝜓 ∨ 𝜃 ∨ 𝜂) ↔ (𝜒 ∨ 𝜏 ∨ 𝜁))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bi3d.1 | . . . 4 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
2 | bi3d.2 | . . . 4 ⊢ (𝜑 → (𝜃 ↔ 𝜏)) | |
3 | 1, 2 | orbi12d 917 | . . 3 ⊢ (𝜑 → ((𝜓 ∨ 𝜃) ↔ (𝜒 ∨ 𝜏))) |
4 | bi3d.3 | . . 3 ⊢ (𝜑 → (𝜂 ↔ 𝜁)) | |
5 | 3, 4 | orbi12d 917 | . 2 ⊢ (𝜑 → (((𝜓 ∨ 𝜃) ∨ 𝜂) ↔ ((𝜒 ∨ 𝜏) ∨ 𝜁))) |
6 | df-3or 1088 | . 2 ⊢ ((𝜓 ∨ 𝜃 ∨ 𝜂) ↔ ((𝜓 ∨ 𝜃) ∨ 𝜂)) | |
7 | df-3or 1088 | . 2 ⊢ ((𝜒 ∨ 𝜏 ∨ 𝜁) ↔ ((𝜒 ∨ 𝜏) ∨ 𝜁)) | |
8 | 5, 6, 7 | 3bitr4g 313 | 1 ⊢ (𝜑 → ((𝜓 ∨ 𝜃 ∨ 𝜂) ↔ (𝜒 ∨ 𝜏 ∨ 𝜁))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∨ wo 845 ∨ w3o 1086 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-or 846 df-3or 1088 |
This theorem is referenced by: moeq3 3708 soeq1 5609 solin 5613 soinxp 5757 ordtri3or 6396 isosolem 7346 sorpssi 7721 dfwe2 7763 f1oweALT 7961 soxp 8117 frxp3 8139 xpord3inddlem 8142 elfiun 9427 sornom 10274 ltsopr 11029 elz 12562 dyaddisj 25120 istrkgl 27747 istrkgld 27748 axtgupdim2 27760 tgdim01 27796 tglngval 27840 tgellng 27842 colcom 27847 colrot1 27848 legso 27888 lncom 27911 lnrot1 27912 lnrot2 27913 ttgval 28164 ttgvalOLD 28165 colinearalg 28206 axlowdim2 28256 axlowdim 28257 elntg 28280 elntg2 28281 nb3grprlem2 28676 frgrwopreg 29614 istrkg2d 33747 axtgupdim2ALTV 33749 brcolinear2 35099 colineardim1 35102 colinearperm1 35103 fin2so 36561 uneqsn 42858 3orbi123 43354 |
Copyright terms: Public domain | W3C validator |