![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3orbi123d | Structured version Visualization version GIF version |
Description: Deduction joining 3 equivalences to form equivalence of disjunctions. (Contributed by NM, 20-Apr-1994.) |
Ref | Expression |
---|---|
bi3d.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
bi3d.2 | ⊢ (𝜑 → (𝜃 ↔ 𝜏)) |
bi3d.3 | ⊢ (𝜑 → (𝜂 ↔ 𝜁)) |
Ref | Expression |
---|---|
3orbi123d | ⊢ (𝜑 → ((𝜓 ∨ 𝜃 ∨ 𝜂) ↔ (𝜒 ∨ 𝜏 ∨ 𝜁))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bi3d.1 | . . . 4 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
2 | bi3d.2 | . . . 4 ⊢ (𝜑 → (𝜃 ↔ 𝜏)) | |
3 | 1, 2 | orbi12d 918 | . . 3 ⊢ (𝜑 → ((𝜓 ∨ 𝜃) ↔ (𝜒 ∨ 𝜏))) |
4 | bi3d.3 | . . 3 ⊢ (𝜑 → (𝜂 ↔ 𝜁)) | |
5 | 3, 4 | orbi12d 918 | . 2 ⊢ (𝜑 → (((𝜓 ∨ 𝜃) ∨ 𝜂) ↔ ((𝜒 ∨ 𝜏) ∨ 𝜁))) |
6 | df-3or 1087 | . 2 ⊢ ((𝜓 ∨ 𝜃 ∨ 𝜂) ↔ ((𝜓 ∨ 𝜃) ∨ 𝜂)) | |
7 | df-3or 1087 | . 2 ⊢ ((𝜒 ∨ 𝜏 ∨ 𝜁) ↔ ((𝜒 ∨ 𝜏) ∨ 𝜁)) | |
8 | 5, 6, 7 | 3bitr4g 314 | 1 ⊢ (𝜑 → ((𝜓 ∨ 𝜃 ∨ 𝜂) ↔ (𝜒 ∨ 𝜏 ∨ 𝜁))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∨ wo 847 ∨ w3o 1085 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-or 848 df-3or 1087 |
This theorem is referenced by: moeq3 3720 soeq1 5617 solin 5622 soinxp 5769 ordtri3or 6417 isosolem 7366 sorpssi 7747 dfwe2 7792 f1oweALT 7995 soxp 8152 frxp3 8174 xpord3inddlem 8177 elfiun 9467 sornom 10314 ltsopr 11069 elz 12612 dyaddisj 25644 istrkgl 28480 istrkgld 28481 axtgupdim2 28493 tgdim01 28529 tglngval 28573 tgellng 28575 colcom 28580 colrot1 28581 legso 28621 lncom 28644 lnrot1 28645 lnrot2 28646 ttgval 28897 ttgvalOLD 28898 colinearalg 28939 axlowdim2 28989 axlowdim 28990 elntg 29013 elntg2 29014 nb3grprlem2 29412 frgrwopreg 30351 constrsuc 33742 istrkg2d 34659 axtgupdim2ALTV 34661 brcolinear2 36039 colineardim1 36042 colinearperm1 36043 fin2so 37593 uneqsn 44014 3orbi123 44508 gpgov 47936 gpgedgel 47942 gpgedgvtx0 47953 gpgedgvtx1 47954 |
Copyright terms: Public domain | W3C validator |