| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3orbi123d | Structured version Visualization version GIF version | ||
| Description: Deduction joining 3 equivalences to form equivalence of disjunctions. (Contributed by NM, 20-Apr-1994.) |
| Ref | Expression |
|---|---|
| bi3d.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| bi3d.2 | ⊢ (𝜑 → (𝜃 ↔ 𝜏)) |
| bi3d.3 | ⊢ (𝜑 → (𝜂 ↔ 𝜁)) |
| Ref | Expression |
|---|---|
| 3orbi123d | ⊢ (𝜑 → ((𝜓 ∨ 𝜃 ∨ 𝜂) ↔ (𝜒 ∨ 𝜏 ∨ 𝜁))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bi3d.1 | . . . 4 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 2 | bi3d.2 | . . . 4 ⊢ (𝜑 → (𝜃 ↔ 𝜏)) | |
| 3 | 1, 2 | orbi12d 918 | . . 3 ⊢ (𝜑 → ((𝜓 ∨ 𝜃) ↔ (𝜒 ∨ 𝜏))) |
| 4 | bi3d.3 | . . 3 ⊢ (𝜑 → (𝜂 ↔ 𝜁)) | |
| 5 | 3, 4 | orbi12d 918 | . 2 ⊢ (𝜑 → (((𝜓 ∨ 𝜃) ∨ 𝜂) ↔ ((𝜒 ∨ 𝜏) ∨ 𝜁))) |
| 6 | df-3or 1087 | . 2 ⊢ ((𝜓 ∨ 𝜃 ∨ 𝜂) ↔ ((𝜓 ∨ 𝜃) ∨ 𝜂)) | |
| 7 | df-3or 1087 | . 2 ⊢ ((𝜒 ∨ 𝜏 ∨ 𝜁) ↔ ((𝜒 ∨ 𝜏) ∨ 𝜁)) | |
| 8 | 5, 6, 7 | 3bitr4g 314 | 1 ⊢ (𝜑 → ((𝜓 ∨ 𝜃 ∨ 𝜂) ↔ (𝜒 ∨ 𝜏 ∨ 𝜁))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∨ wo 847 ∨ w3o 1085 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-or 848 df-3or 1087 |
| This theorem is referenced by: moeq3 3686 soeq1 5570 solin 5576 soinxp 5723 ordtri3or 6367 isosolem 7325 sorpssi 7708 dfwe2 7753 f1oweALT 7954 soxp 8111 frxp3 8133 xpord3inddlem 8136 elfiun 9388 sornom 10237 ltsopr 10992 elz 12538 dyaddisj 25504 istrkgl 28392 istrkgld 28393 axtgupdim2 28405 tgdim01 28441 tglngval 28485 tgellng 28487 colcom 28492 colrot1 28493 legso 28533 lncom 28556 lnrot1 28557 lnrot2 28558 ttgval 28809 colinearalg 28844 axlowdim2 28894 axlowdim 28895 elntg 28918 elntg2 28919 nb3grprlem2 29315 frgrwopreg 30259 constrsuc 33735 constrcbvlem 33752 istrkg2d 34664 axtgupdim2ALTV 34666 brcolinear2 36053 colineardim1 36056 colinearperm1 36057 fin2so 37608 uneqsn 44021 3orbi123 44508 gpgov 48037 gpgiedgdmel 48044 gpgedgel 48045 gpgedgvtx0 48056 gpgedgvtx1 48057 gpgedgiov 48060 gpgedg2ov 48061 gpgedg2iv 48062 gpg3kgrtriexlem6 48083 gpgprismgr4cycllem3 48091 gpgprismgr4cycllem10 48098 pgnbgreunbgrlem1 48107 pgnbgreunbgrlem4 48113 pgnbgreunbgrlem5 48117 |
| Copyright terms: Public domain | W3C validator |