| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3orbi123d | Structured version Visualization version GIF version | ||
| Description: Deduction joining 3 equivalences to form equivalence of disjunctions. (Contributed by NM, 20-Apr-1994.) |
| Ref | Expression |
|---|---|
| bi3d.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| bi3d.2 | ⊢ (𝜑 → (𝜃 ↔ 𝜏)) |
| bi3d.3 | ⊢ (𝜑 → (𝜂 ↔ 𝜁)) |
| Ref | Expression |
|---|---|
| 3orbi123d | ⊢ (𝜑 → ((𝜓 ∨ 𝜃 ∨ 𝜂) ↔ (𝜒 ∨ 𝜏 ∨ 𝜁))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bi3d.1 | . . . 4 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 2 | bi3d.2 | . . . 4 ⊢ (𝜑 → (𝜃 ↔ 𝜏)) | |
| 3 | 1, 2 | orbi12d 918 | . . 3 ⊢ (𝜑 → ((𝜓 ∨ 𝜃) ↔ (𝜒 ∨ 𝜏))) |
| 4 | bi3d.3 | . . 3 ⊢ (𝜑 → (𝜂 ↔ 𝜁)) | |
| 5 | 3, 4 | orbi12d 918 | . 2 ⊢ (𝜑 → (((𝜓 ∨ 𝜃) ∨ 𝜂) ↔ ((𝜒 ∨ 𝜏) ∨ 𝜁))) |
| 6 | df-3or 1087 | . 2 ⊢ ((𝜓 ∨ 𝜃 ∨ 𝜂) ↔ ((𝜓 ∨ 𝜃) ∨ 𝜂)) | |
| 7 | df-3or 1087 | . 2 ⊢ ((𝜒 ∨ 𝜏 ∨ 𝜁) ↔ ((𝜒 ∨ 𝜏) ∨ 𝜁)) | |
| 8 | 5, 6, 7 | 3bitr4g 314 | 1 ⊢ (𝜑 → ((𝜓 ∨ 𝜃 ∨ 𝜂) ↔ (𝜒 ∨ 𝜏 ∨ 𝜁))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∨ wo 847 ∨ w3o 1085 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-or 848 df-3or 1087 |
| This theorem is referenced by: moeq3 3672 soeq1 5548 solin 5554 soinxp 5701 ordtri3or 6339 isosolem 7284 sorpssi 7665 dfwe2 7710 f1oweALT 7907 soxp 8062 frxp3 8084 xpord3inddlem 8087 elfiun 9320 sornom 10171 ltsopr 10926 elz 12473 dyaddisj 25495 istrkgl 28403 istrkgld 28404 axtgupdim2 28416 tgdim01 28452 tglngval 28496 tgellng 28498 colcom 28503 colrot1 28504 legso 28544 lncom 28567 lnrot1 28568 lnrot2 28569 ttgval 28820 colinearalg 28855 axlowdim2 28905 axlowdim 28906 elntg 28929 elntg2 28930 nb3grprlem2 29326 frgrwopreg 30267 constrsuc 33705 constrcbvlem 33722 istrkg2d 34634 axtgupdim2ALTV 34636 brcolinear2 36036 colineardim1 36039 colinearperm1 36040 fin2so 37591 uneqsn 44002 3orbi123 44489 gpgov 48030 gpgiedgdmel 48037 gpgedgel 48038 gpgedgvtx0 48049 gpgedgvtx1 48050 gpgedgiov 48053 gpgedg2ov 48054 gpgedg2iv 48055 gpg3kgrtriexlem6 48076 gpgprismgr4cycllem3 48085 gpgprismgr4cycllem10 48092 pgnbgreunbgrlem1 48101 pgnbgreunbgrlem4 48107 pgnbgreunbgrlem5 48111 gpg5edgnedg 48118 |
| Copyright terms: Public domain | W3C validator |