MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3orbi123d Structured version   Visualization version   GIF version

Theorem 3orbi123d 1437
Description: Deduction joining 3 equivalences to form equivalence of disjunctions. (Contributed by NM, 20-Apr-1994.)
Hypotheses
Ref Expression
bi3d.1 (𝜑 → (𝜓𝜒))
bi3d.2 (𝜑 → (𝜃𝜏))
bi3d.3 (𝜑 → (𝜂𝜁))
Assertion
Ref Expression
3orbi123d (𝜑 → ((𝜓𝜃𝜂) ↔ (𝜒𝜏𝜁)))

Proof of Theorem 3orbi123d
StepHypRef Expression
1 bi3d.1 . . . 4 (𝜑 → (𝜓𝜒))
2 bi3d.2 . . . 4 (𝜑 → (𝜃𝜏))
31, 2orbi12d 918 . . 3 (𝜑 → ((𝜓𝜃) ↔ (𝜒𝜏)))
4 bi3d.3 . . 3 (𝜑 → (𝜂𝜁))
53, 4orbi12d 918 . 2 (𝜑 → (((𝜓𝜃) ∨ 𝜂) ↔ ((𝜒𝜏) ∨ 𝜁)))
6 df-3or 1087 . 2 ((𝜓𝜃𝜂) ↔ ((𝜓𝜃) ∨ 𝜂))
7 df-3or 1087 . 2 ((𝜒𝜏𝜁) ↔ ((𝜒𝜏) ∨ 𝜁))
85, 6, 73bitr4g 314 1 (𝜑 → ((𝜓𝜃𝜂) ↔ (𝜒𝜏𝜁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wo 847  w3o 1085
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-or 848  df-3or 1087
This theorem is referenced by:  moeq3  3666  soeq1  5543  solin  5549  soinxp  5696  ordtri3or  6338  isosolem  7281  sorpssi  7662  dfwe2  7707  f1oweALT  7904  soxp  8059  frxp3  8081  xpord3inddlem  8084  elfiun  9314  sornom  10168  ltsopr  10923  elz  12470  dyaddisj  25524  istrkgl  28436  istrkgld  28437  axtgupdim2  28449  tgdim01  28485  tglngval  28529  tgellng  28531  colcom  28536  colrot1  28537  legso  28577  lncom  28600  lnrot1  28601  lnrot2  28602  ttgval  28853  colinearalg  28888  axlowdim2  28938  axlowdim  28939  elntg  28962  elntg2  28963  nb3grprlem2  29359  frgrwopreg  30303  constrsuc  33751  constrcbvlem  33768  istrkg2d  34679  axtgupdim2ALTV  34681  brcolinear2  36102  colineardim1  36105  colinearperm1  36106  fin2so  37657  uneqsn  44128  3orbi123  44614  gpgov  48152  gpgiedgdmel  48159  gpgedgel  48160  gpgedgvtx0  48171  gpgedgvtx1  48172  gpgedgiov  48175  gpgedg2ov  48176  gpgedg2iv  48177  gpg3kgrtriexlem6  48198  gpgprismgr4cycllem3  48207  gpgprismgr4cycllem10  48214  pgnbgreunbgrlem1  48223  pgnbgreunbgrlem4  48229  pgnbgreunbgrlem5  48233  gpg5edgnedg  48240
  Copyright terms: Public domain W3C validator