| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3orbi123d | Structured version Visualization version GIF version | ||
| Description: Deduction joining 3 equivalences to form equivalence of disjunctions. (Contributed by NM, 20-Apr-1994.) |
| Ref | Expression |
|---|---|
| bi3d.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| bi3d.2 | ⊢ (𝜑 → (𝜃 ↔ 𝜏)) |
| bi3d.3 | ⊢ (𝜑 → (𝜂 ↔ 𝜁)) |
| Ref | Expression |
|---|---|
| 3orbi123d | ⊢ (𝜑 → ((𝜓 ∨ 𝜃 ∨ 𝜂) ↔ (𝜒 ∨ 𝜏 ∨ 𝜁))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bi3d.1 | . . . 4 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 2 | bi3d.2 | . . . 4 ⊢ (𝜑 → (𝜃 ↔ 𝜏)) | |
| 3 | 1, 2 | orbi12d 918 | . . 3 ⊢ (𝜑 → ((𝜓 ∨ 𝜃) ↔ (𝜒 ∨ 𝜏))) |
| 4 | bi3d.3 | . . 3 ⊢ (𝜑 → (𝜂 ↔ 𝜁)) | |
| 5 | 3, 4 | orbi12d 918 | . 2 ⊢ (𝜑 → (((𝜓 ∨ 𝜃) ∨ 𝜂) ↔ ((𝜒 ∨ 𝜏) ∨ 𝜁))) |
| 6 | df-3or 1087 | . 2 ⊢ ((𝜓 ∨ 𝜃 ∨ 𝜂) ↔ ((𝜓 ∨ 𝜃) ∨ 𝜂)) | |
| 7 | df-3or 1087 | . 2 ⊢ ((𝜒 ∨ 𝜏 ∨ 𝜁) ↔ ((𝜒 ∨ 𝜏) ∨ 𝜁)) | |
| 8 | 5, 6, 7 | 3bitr4g 314 | 1 ⊢ (𝜑 → ((𝜓 ∨ 𝜃 ∨ 𝜂) ↔ (𝜒 ∨ 𝜏 ∨ 𝜁))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∨ wo 847 ∨ w3o 1085 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-or 848 df-3or 1087 |
| This theorem is referenced by: moeq3 3666 soeq1 5543 solin 5549 soinxp 5696 ordtri3or 6338 isosolem 7281 sorpssi 7662 dfwe2 7707 f1oweALT 7904 soxp 8059 frxp3 8081 xpord3inddlem 8084 elfiun 9314 sornom 10168 ltsopr 10923 elz 12470 dyaddisj 25524 istrkgl 28436 istrkgld 28437 axtgupdim2 28449 tgdim01 28485 tglngval 28529 tgellng 28531 colcom 28536 colrot1 28537 legso 28577 lncom 28600 lnrot1 28601 lnrot2 28602 ttgval 28853 colinearalg 28888 axlowdim2 28938 axlowdim 28939 elntg 28962 elntg2 28963 nb3grprlem2 29359 frgrwopreg 30303 constrsuc 33751 constrcbvlem 33768 istrkg2d 34679 axtgupdim2ALTV 34681 brcolinear2 36102 colineardim1 36105 colinearperm1 36106 fin2so 37657 uneqsn 44128 3orbi123 44614 gpgov 48152 gpgiedgdmel 48159 gpgedgel 48160 gpgedgvtx0 48171 gpgedgvtx1 48172 gpgedgiov 48175 gpgedg2ov 48176 gpgedg2iv 48177 gpg3kgrtriexlem6 48198 gpgprismgr4cycllem3 48207 gpgprismgr4cycllem10 48214 pgnbgreunbgrlem1 48223 pgnbgreunbgrlem4 48229 pgnbgreunbgrlem5 48233 gpg5edgnedg 48240 |
| Copyright terms: Public domain | W3C validator |