MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3orbi123d Structured version   Visualization version   GIF version

Theorem 3orbi123d 1437
Description: Deduction joining 3 equivalences to form equivalence of disjunctions. (Contributed by NM, 20-Apr-1994.)
Hypotheses
Ref Expression
bi3d.1 (𝜑 → (𝜓𝜒))
bi3d.2 (𝜑 → (𝜃𝜏))
bi3d.3 (𝜑 → (𝜂𝜁))
Assertion
Ref Expression
3orbi123d (𝜑 → ((𝜓𝜃𝜂) ↔ (𝜒𝜏𝜁)))

Proof of Theorem 3orbi123d
StepHypRef Expression
1 bi3d.1 . . . 4 (𝜑 → (𝜓𝜒))
2 bi3d.2 . . . 4 (𝜑 → (𝜃𝜏))
31, 2orbi12d 918 . . 3 (𝜑 → ((𝜓𝜃) ↔ (𝜒𝜏)))
4 bi3d.3 . . 3 (𝜑 → (𝜂𝜁))
53, 4orbi12d 918 . 2 (𝜑 → (((𝜓𝜃) ∨ 𝜂) ↔ ((𝜒𝜏) ∨ 𝜁)))
6 df-3or 1087 . 2 ((𝜓𝜃𝜂) ↔ ((𝜓𝜃) ∨ 𝜂))
7 df-3or 1087 . 2 ((𝜒𝜏𝜁) ↔ ((𝜒𝜏) ∨ 𝜁))
85, 6, 73bitr4g 314 1 (𝜑 → ((𝜓𝜃𝜂) ↔ (𝜒𝜏𝜁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wo 847  w3o 1085
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-or 848  df-3or 1087
This theorem is referenced by:  moeq3  3680  soeq1  5560  solin  5566  soinxp  5713  ordtri3or  6352  isosolem  7304  sorpssi  7685  dfwe2  7730  f1oweALT  7930  soxp  8085  frxp3  8107  xpord3inddlem  8110  elfiun  9357  sornom  10206  ltsopr  10961  elz  12507  dyaddisj  25530  istrkgl  28438  istrkgld  28439  axtgupdim2  28451  tgdim01  28487  tglngval  28531  tgellng  28533  colcom  28538  colrot1  28539  legso  28579  lncom  28602  lnrot1  28603  lnrot2  28604  ttgval  28855  colinearalg  28890  axlowdim2  28940  axlowdim  28941  elntg  28964  elntg2  28965  nb3grprlem2  29361  frgrwopreg  30302  constrsuc  33721  constrcbvlem  33738  istrkg2d  34650  axtgupdim2ALTV  34652  brcolinear2  36039  colineardim1  36042  colinearperm1  36043  fin2so  37594  uneqsn  44007  3orbi123  44494  gpgov  48026  gpgiedgdmel  48033  gpgedgel  48034  gpgedgvtx0  48045  gpgedgvtx1  48046  gpgedgiov  48049  gpgedg2ov  48050  gpgedg2iv  48051  gpg3kgrtriexlem6  48072  gpgprismgr4cycllem3  48080  gpgprismgr4cycllem10  48087  pgnbgreunbgrlem1  48096  pgnbgreunbgrlem4  48102  pgnbgreunbgrlem5  48106
  Copyright terms: Public domain W3C validator