| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3orbi123d | Structured version Visualization version GIF version | ||
| Description: Deduction joining 3 equivalences to form equivalence of disjunctions. (Contributed by NM, 20-Apr-1994.) |
| Ref | Expression |
|---|---|
| bi3d.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| bi3d.2 | ⊢ (𝜑 → (𝜃 ↔ 𝜏)) |
| bi3d.3 | ⊢ (𝜑 → (𝜂 ↔ 𝜁)) |
| Ref | Expression |
|---|---|
| 3orbi123d | ⊢ (𝜑 → ((𝜓 ∨ 𝜃 ∨ 𝜂) ↔ (𝜒 ∨ 𝜏 ∨ 𝜁))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bi3d.1 | . . . 4 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 2 | bi3d.2 | . . . 4 ⊢ (𝜑 → (𝜃 ↔ 𝜏)) | |
| 3 | 1, 2 | orbi12d 918 | . . 3 ⊢ (𝜑 → ((𝜓 ∨ 𝜃) ↔ (𝜒 ∨ 𝜏))) |
| 4 | bi3d.3 | . . 3 ⊢ (𝜑 → (𝜂 ↔ 𝜁)) | |
| 5 | 3, 4 | orbi12d 918 | . 2 ⊢ (𝜑 → (((𝜓 ∨ 𝜃) ∨ 𝜂) ↔ ((𝜒 ∨ 𝜏) ∨ 𝜁))) |
| 6 | df-3or 1087 | . 2 ⊢ ((𝜓 ∨ 𝜃 ∨ 𝜂) ↔ ((𝜓 ∨ 𝜃) ∨ 𝜂)) | |
| 7 | df-3or 1087 | . 2 ⊢ ((𝜒 ∨ 𝜏 ∨ 𝜁) ↔ ((𝜒 ∨ 𝜏) ∨ 𝜁)) | |
| 8 | 5, 6, 7 | 3bitr4g 314 | 1 ⊢ (𝜑 → ((𝜓 ∨ 𝜃 ∨ 𝜂) ↔ (𝜒 ∨ 𝜏 ∨ 𝜁))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∨ wo 847 ∨ w3o 1085 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-or 848 df-3or 1087 |
| This theorem is referenced by: moeq3 3680 soeq1 5560 solin 5566 soinxp 5713 ordtri3or 6352 isosolem 7304 sorpssi 7685 dfwe2 7730 f1oweALT 7930 soxp 8085 frxp3 8107 xpord3inddlem 8110 elfiun 9357 sornom 10206 ltsopr 10961 elz 12507 dyaddisj 25530 istrkgl 28438 istrkgld 28439 axtgupdim2 28451 tgdim01 28487 tglngval 28531 tgellng 28533 colcom 28538 colrot1 28539 legso 28579 lncom 28602 lnrot1 28603 lnrot2 28604 ttgval 28855 colinearalg 28890 axlowdim2 28940 axlowdim 28941 elntg 28964 elntg2 28965 nb3grprlem2 29361 frgrwopreg 30302 constrsuc 33721 constrcbvlem 33738 istrkg2d 34650 axtgupdim2ALTV 34652 brcolinear2 36039 colineardim1 36042 colinearperm1 36043 fin2so 37594 uneqsn 44007 3orbi123 44494 gpgov 48026 gpgiedgdmel 48033 gpgedgel 48034 gpgedgvtx0 48045 gpgedgvtx1 48046 gpgedgiov 48049 gpgedg2ov 48050 gpgedg2iv 48051 gpg3kgrtriexlem6 48072 gpgprismgr4cycllem3 48080 gpgprismgr4cycllem10 48087 pgnbgreunbgrlem1 48096 pgnbgreunbgrlem4 48102 pgnbgreunbgrlem5 48106 |
| Copyright terms: Public domain | W3C validator |