MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3orbi123d Structured version   Visualization version   GIF version

Theorem 3orbi123d 1437
Description: Deduction joining 3 equivalences to form equivalence of disjunctions. (Contributed by NM, 20-Apr-1994.)
Hypotheses
Ref Expression
bi3d.1 (𝜑 → (𝜓𝜒))
bi3d.2 (𝜑 → (𝜃𝜏))
bi3d.3 (𝜑 → (𝜂𝜁))
Assertion
Ref Expression
3orbi123d (𝜑 → ((𝜓𝜃𝜂) ↔ (𝜒𝜏𝜁)))

Proof of Theorem 3orbi123d
StepHypRef Expression
1 bi3d.1 . . . 4 (𝜑 → (𝜓𝜒))
2 bi3d.2 . . . 4 (𝜑 → (𝜃𝜏))
31, 2orbi12d 918 . . 3 (𝜑 → ((𝜓𝜃) ↔ (𝜒𝜏)))
4 bi3d.3 . . 3 (𝜑 → (𝜂𝜁))
53, 4orbi12d 918 . 2 (𝜑 → (((𝜓𝜃) ∨ 𝜂) ↔ ((𝜒𝜏) ∨ 𝜁)))
6 df-3or 1087 . 2 ((𝜓𝜃𝜂) ↔ ((𝜓𝜃) ∨ 𝜂))
7 df-3or 1087 . 2 ((𝜒𝜏𝜁) ↔ ((𝜒𝜏) ∨ 𝜁))
85, 6, 73bitr4g 314 1 (𝜑 → ((𝜓𝜃𝜂) ↔ (𝜒𝜏𝜁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wo 847  w3o 1085
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-or 848  df-3or 1087
This theorem is referenced by:  moeq3  3683  soeq1  5567  solin  5573  soinxp  5720  ordtri3or  6364  isosolem  7322  sorpssi  7705  dfwe2  7750  f1oweALT  7951  soxp  8108  frxp3  8130  xpord3inddlem  8133  elfiun  9381  sornom  10230  ltsopr  10985  elz  12531  dyaddisj  25497  istrkgl  28385  istrkgld  28386  axtgupdim2  28398  tgdim01  28434  tglngval  28478  tgellng  28480  colcom  28485  colrot1  28486  legso  28526  lncom  28549  lnrot1  28550  lnrot2  28551  ttgval  28802  colinearalg  28837  axlowdim2  28887  axlowdim  28888  elntg  28911  elntg2  28912  nb3grprlem2  29308  frgrwopreg  30252  constrsuc  33728  constrcbvlem  33745  istrkg2d  34657  axtgupdim2ALTV  34659  brcolinear2  36046  colineardim1  36049  colinearperm1  36050  fin2so  37601  uneqsn  44014  3orbi123  44501  gpgov  48033  gpgiedgdmel  48040  gpgedgel  48041  gpgedgvtx0  48052  gpgedgvtx1  48053  gpgedgiov  48056  gpgedg2ov  48057  gpgedg2iv  48058  gpg3kgrtriexlem6  48079  gpgprismgr4cycllem3  48087  gpgprismgr4cycllem10  48094  pgnbgreunbgrlem1  48103  pgnbgreunbgrlem4  48109  pgnbgreunbgrlem5  48113
  Copyright terms: Public domain W3C validator