MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3orbi123d Structured version   Visualization version   GIF version

Theorem 3orbi123d 1434
Description: Deduction joining 3 equivalences to form equivalence of disjunctions. (Contributed by NM, 20-Apr-1994.)
Hypotheses
Ref Expression
bi3d.1 (𝜑 → (𝜓𝜒))
bi3d.2 (𝜑 → (𝜃𝜏))
bi3d.3 (𝜑 → (𝜂𝜁))
Assertion
Ref Expression
3orbi123d (𝜑 → ((𝜓𝜃𝜂) ↔ (𝜒𝜏𝜁)))

Proof of Theorem 3orbi123d
StepHypRef Expression
1 bi3d.1 . . . 4 (𝜑 → (𝜓𝜒))
2 bi3d.2 . . . 4 (𝜑 → (𝜃𝜏))
31, 2orbi12d 916 . . 3 (𝜑 → ((𝜓𝜃) ↔ (𝜒𝜏)))
4 bi3d.3 . . 3 (𝜑 → (𝜂𝜁))
53, 4orbi12d 916 . 2 (𝜑 → (((𝜓𝜃) ∨ 𝜂) ↔ ((𝜒𝜏) ∨ 𝜁)))
6 df-3or 1087 . 2 ((𝜓𝜃𝜂) ↔ ((𝜓𝜃) ∨ 𝜂))
7 df-3or 1087 . 2 ((𝜒𝜏𝜁) ↔ ((𝜒𝜏) ∨ 𝜁))
85, 6, 73bitr4g 314 1 (𝜑 → ((𝜓𝜃𝜂) ↔ (𝜒𝜏𝜁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wo 844  w3o 1085
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-or 845  df-3or 1087
This theorem is referenced by:  moeq3  3648  soeq1  5521  solin  5525  soinxp  5665  ordtri3or  6293  isosolem  7212  sorpssi  7574  dfwe2  7616  f1oweALT  7806  soxp  7959  elfiun  9178  sornom  10022  ltsopr  10777  elz  12310  dyaddisj  24749  istrkgl  26808  istrkgld  26809  axtgupdim2  26821  tgdim01  26857  tglngval  26901  tgellng  26903  colcom  26908  colrot1  26909  legso  26949  lncom  26972  lnrot1  26973  lnrot2  26974  ttgval  27225  ttgvalOLD  27226  colinearalg  27267  axlowdim2  27317  axlowdim  27318  elntg  27341  elntg2  27342  nb3grprlem2  27737  frgrwopreg  28674  istrkg2d  32633  axtgupdim2ALTV  32635  xpord3ind  33787  brcolinear2  34347  colineardim1  34350  colinearperm1  34351  fin2so  35751  uneqsn  41593  3orbi123  42091
  Copyright terms: Public domain W3C validator