Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 3orbi123d | Structured version Visualization version GIF version |
Description: Deduction joining 3 equivalences to form equivalence of disjunctions. (Contributed by NM, 20-Apr-1994.) |
Ref | Expression |
---|---|
bi3d.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
bi3d.2 | ⊢ (𝜑 → (𝜃 ↔ 𝜏)) |
bi3d.3 | ⊢ (𝜑 → (𝜂 ↔ 𝜁)) |
Ref | Expression |
---|---|
3orbi123d | ⊢ (𝜑 → ((𝜓 ∨ 𝜃 ∨ 𝜂) ↔ (𝜒 ∨ 𝜏 ∨ 𝜁))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bi3d.1 | . . . 4 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
2 | bi3d.2 | . . . 4 ⊢ (𝜑 → (𝜃 ↔ 𝜏)) | |
3 | 1, 2 | orbi12d 915 | . . 3 ⊢ (𝜑 → ((𝜓 ∨ 𝜃) ↔ (𝜒 ∨ 𝜏))) |
4 | bi3d.3 | . . 3 ⊢ (𝜑 → (𝜂 ↔ 𝜁)) | |
5 | 3, 4 | orbi12d 915 | . 2 ⊢ (𝜑 → (((𝜓 ∨ 𝜃) ∨ 𝜂) ↔ ((𝜒 ∨ 𝜏) ∨ 𝜁))) |
6 | df-3or 1086 | . 2 ⊢ ((𝜓 ∨ 𝜃 ∨ 𝜂) ↔ ((𝜓 ∨ 𝜃) ∨ 𝜂)) | |
7 | df-3or 1086 | . 2 ⊢ ((𝜒 ∨ 𝜏 ∨ 𝜁) ↔ ((𝜒 ∨ 𝜏) ∨ 𝜁)) | |
8 | 5, 6, 7 | 3bitr4g 313 | 1 ⊢ (𝜑 → ((𝜓 ∨ 𝜃 ∨ 𝜂) ↔ (𝜒 ∨ 𝜏 ∨ 𝜁))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∨ wo 843 ∨ w3o 1084 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-or 844 df-3or 1086 |
This theorem is referenced by: moeq3 3650 soeq1 5523 solin 5527 soinxp 5667 ordtri3or 6295 isosolem 7211 sorpssi 7573 dfwe2 7615 f1oweALT 7801 soxp 7954 elfiun 9150 sornom 10017 ltsopr 10772 elz 12304 dyaddisj 24741 istrkgl 26800 istrkgld 26801 axtgupdim2 26813 tgdim01 26849 tglngval 26893 tgellng 26895 colcom 26900 colrot1 26901 legso 26941 lncom 26964 lnrot1 26965 lnrot2 26966 ttgval 27217 ttgvalOLD 27218 colinearalg 27259 axlowdim2 27309 axlowdim 27310 elntg 27333 elntg2 27334 nb3grprlem2 27729 frgrwopreg 28666 istrkg2d 32625 axtgupdim2ALTV 32627 xpord3ind 33779 brcolinear2 34339 colineardim1 34342 colinearperm1 34343 fin2so 35743 uneqsn 41586 3orbi123 42084 |
Copyright terms: Public domain | W3C validator |