Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dihjatcclem4 Structured version   Visualization version   GIF version

Theorem dihjatcclem4 41420
Description: Lemma for isomorphism H of lattice join of two atoms not under the fiducial hyperplane. (Contributed by NM, 29-Sep-2014.)
Hypotheses
Ref Expression
dihjatcclem.b 𝐵 = (Base‘𝐾)
dihjatcclem.l = (le‘𝐾)
dihjatcclem.h 𝐻 = (LHyp‘𝐾)
dihjatcclem.j = (join‘𝐾)
dihjatcclem.m = (meet‘𝐾)
dihjatcclem.a 𝐴 = (Atoms‘𝐾)
dihjatcclem.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
dihjatcclem.s = (LSSum‘𝑈)
dihjatcclem.i 𝐼 = ((DIsoH‘𝐾)‘𝑊)
dihjatcclem.v 𝑉 = ((𝑃 𝑄) 𝑊)
dihjatcclem.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
dihjatcclem.p (𝜑 → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
dihjatcclem.q (𝜑 → (𝑄𝐴 ∧ ¬ 𝑄 𝑊))
dihjatcc.w 𝐶 = ((oc‘𝐾)‘𝑊)
dihjatcc.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
dihjatcc.r 𝑅 = ((trL‘𝐾)‘𝑊)
dihjatcc.e 𝐸 = ((TEndo‘𝐾)‘𝑊)
dihjatcc.g 𝐺 = (𝑑𝑇 (𝑑𝐶) = 𝑃)
dihjatcc.dd 𝐷 = (𝑑𝑇 (𝑑𝐶) = 𝑄)
dihjatcc.n 𝑁 = (𝑎𝐸 ↦ (𝑑𝑇(𝑎𝑑)))
dihjatcc.o 0 = (𝑑𝑇 ↦ ( I ↾ 𝐵))
dihjatcc.d 𝐽 = (𝑎𝐸, 𝑏𝐸 ↦ (𝑑𝑇 ↦ ((𝑎𝑑) ∘ (𝑏𝑑))))
Assertion
Ref Expression
dihjatcclem4 (𝜑 → (𝐼𝑉) ⊆ ((𝐼𝑃) (𝐼𝑄)))
Distinct variable groups:   ,𝑑   𝐴,𝑑   𝐵,𝑑   𝐶,𝑑   𝑎,𝑏,𝐸   𝐻,𝑑   𝑃,𝑑   𝑎,𝑑,𝐾,𝑏   𝑄,𝑑   𝑇,𝑎,𝑏,𝑑   𝑊,𝑎,𝑏,𝑑
Allowed substitution hints:   𝜑(𝑎,𝑏,𝑑)   𝐴(𝑎,𝑏)   𝐵(𝑎,𝑏)   𝐶(𝑎,𝑏)   𝐷(𝑎,𝑏,𝑑)   𝑃(𝑎,𝑏)   (𝑎,𝑏,𝑑)   𝑄(𝑎,𝑏)   𝑅(𝑎,𝑏,𝑑)   𝑈(𝑎,𝑏,𝑑)   𝐸(𝑑)   𝐺(𝑎,𝑏,𝑑)   𝐻(𝑎,𝑏)   𝐼(𝑎,𝑏,𝑑)   𝐽(𝑎,𝑏,𝑑)   (𝑎,𝑏,𝑑)   (𝑎,𝑏)   (𝑎,𝑏,𝑑)   𝑁(𝑎,𝑏,𝑑)   𝑉(𝑎,𝑏,𝑑)   0 (𝑎,𝑏,𝑑)

Proof of Theorem dihjatcclem4
Dummy variables 𝑡 𝑓 𝑠 𝑔 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dihjatcclem.k . . 3 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
2 dihjatcclem.h . . . 4 𝐻 = (LHyp‘𝐾)
3 dihjatcclem.i . . . 4 𝐼 = ((DIsoH‘𝐾)‘𝑊)
42, 3dihvalrel 41278 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → Rel (𝐼𝑉))
51, 4syl 17 . 2 (𝜑 → Rel (𝐼𝑉))
61adantr 480 . . . . . . 7 ((𝜑 ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑉) ∧ 𝑠 = 0 )) → (𝐾 ∈ HL ∧ 𝑊𝐻))
7 dihjatcclem.l . . . . . . . . . . . 12 = (le‘𝐾)
8 dihjatcclem.a . . . . . . . . . . . 12 𝐴 = (Atoms‘𝐾)
9 dihjatcc.w . . . . . . . . . . . 12 𝐶 = ((oc‘𝐾)‘𝑊)
107, 8, 2, 9lhpocnel2 40018 . . . . . . . . . . 11 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝐶𝐴 ∧ ¬ 𝐶 𝑊))
111, 10syl 17 . . . . . . . . . 10 (𝜑 → (𝐶𝐴 ∧ ¬ 𝐶 𝑊))
12 dihjatcclem.p . . . . . . . . . 10 (𝜑 → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
13 dihjatcc.t . . . . . . . . . . 11 𝑇 = ((LTrn‘𝐾)‘𝑊)
14 dihjatcc.g . . . . . . . . . . 11 𝐺 = (𝑑𝑇 (𝑑𝐶) = 𝑃)
157, 8, 2, 13, 14ltrniotacl 40578 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐶𝐴 ∧ ¬ 𝐶 𝑊) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝐺𝑇)
161, 11, 12, 15syl3anc 1373 . . . . . . . . 9 (𝜑𝐺𝑇)
17 dihjatcclem.q . . . . . . . . . . 11 (𝜑 → (𝑄𝐴 ∧ ¬ 𝑄 𝑊))
18 dihjatcc.dd . . . . . . . . . . . 12 𝐷 = (𝑑𝑇 (𝑑𝐶) = 𝑄)
197, 8, 2, 13, 18ltrniotacl 40578 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐶𝐴 ∧ ¬ 𝐶 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → 𝐷𝑇)
201, 11, 17, 19syl3anc 1373 . . . . . . . . . 10 (𝜑𝐷𝑇)
212, 13ltrncnv 40145 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐷𝑇) → 𝐷𝑇)
221, 20, 21syl2anc 584 . . . . . . . . 9 (𝜑𝐷𝑇)
232, 13ltrnco 40718 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐺𝑇𝐷𝑇) → (𝐺𝐷) ∈ 𝑇)
241, 16, 22, 23syl3anc 1373 . . . . . . . 8 (𝜑 → (𝐺𝐷) ∈ 𝑇)
2524adantr 480 . . . . . . 7 ((𝜑 ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑉) ∧ 𝑠 = 0 )) → (𝐺𝐷) ∈ 𝑇)
26 simprll 778 . . . . . . 7 ((𝜑 ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑉) ∧ 𝑠 = 0 )) → 𝑓𝑇)
27 simprlr 779 . . . . . . . 8 ((𝜑 ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑉) ∧ 𝑠 = 0 )) → (𝑅𝑓) 𝑉)
28 dihjatcclem.b . . . . . . . . . 10 𝐵 = (Base‘𝐾)
29 dihjatcclem.j . . . . . . . . . 10 = (join‘𝐾)
30 dihjatcclem.m . . . . . . . . . 10 = (meet‘𝐾)
31 dihjatcclem.u . . . . . . . . . 10 𝑈 = ((DVecH‘𝐾)‘𝑊)
32 dihjatcclem.s . . . . . . . . . 10 = (LSSum‘𝑈)
33 dihjatcclem.v . . . . . . . . . 10 𝑉 = ((𝑃 𝑄) 𝑊)
34 dihjatcc.r . . . . . . . . . 10 𝑅 = ((trL‘𝐾)‘𝑊)
35 dihjatcc.e . . . . . . . . . 10 𝐸 = ((TEndo‘𝐾)‘𝑊)
3628, 7, 2, 29, 30, 8, 31, 32, 3, 33, 1, 12, 17, 9, 13, 34, 35, 14, 18dihjatcclem3 41419 . . . . . . . . 9 (𝜑 → (𝑅‘(𝐺𝐷)) = 𝑉)
3736adantr 480 . . . . . . . 8 ((𝜑 ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑉) ∧ 𝑠 = 0 )) → (𝑅‘(𝐺𝐷)) = 𝑉)
3827, 37breqtrrd 5120 . . . . . . 7 ((𝜑 ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑉) ∧ 𝑠 = 0 )) → (𝑅𝑓) (𝑅‘(𝐺𝐷)))
397, 2, 13, 34, 35tendoex 40974 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝐺𝐷) ∈ 𝑇𝑓𝑇) ∧ (𝑅𝑓) (𝑅‘(𝐺𝐷))) → ∃𝑡𝐸 (𝑡‘(𝐺𝐷)) = 𝑓)
406, 25, 26, 38, 39syl121anc 1377 . . . . . 6 ((𝜑 ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑉) ∧ 𝑠 = 0 )) → ∃𝑡𝐸 (𝑡‘(𝐺𝐷)) = 𝑓)
41 df-rex 3054 . . . . . 6 (∃𝑡𝐸 (𝑡‘(𝐺𝐷)) = 𝑓 ↔ ∃𝑡(𝑡𝐸 ∧ (𝑡‘(𝐺𝐷)) = 𝑓))
4240, 41sylib 218 . . . . 5 ((𝜑 ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑉) ∧ 𝑠 = 0 )) → ∃𝑡(𝑡𝐸 ∧ (𝑡‘(𝐺𝐷)) = 𝑓))
43 eqidd 2730 . . . . . . . . . 10 (((𝜑 ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑉) ∧ 𝑠 = 0 )) ∧ (𝑡𝐸 ∧ (𝑡‘(𝐺𝐷)) = 𝑓)) → (𝑡𝐺) = (𝑡𝐺))
44 simprl 770 . . . . . . . . . 10 (((𝜑 ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑉) ∧ 𝑠 = 0 )) ∧ (𝑡𝐸 ∧ (𝑡‘(𝐺𝐷)) = 𝑓)) → 𝑡𝐸)
451ad2antrr 726 . . . . . . . . . . 11 (((𝜑 ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑉) ∧ 𝑠 = 0 )) ∧ (𝑡𝐸 ∧ (𝑡‘(𝐺𝐷)) = 𝑓)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
4612ad2antrr 726 . . . . . . . . . . 11 (((𝜑 ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑉) ∧ 𝑠 = 0 )) ∧ (𝑡𝐸 ∧ (𝑡‘(𝐺𝐷)) = 𝑓)) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
47 fvex 6835 . . . . . . . . . . . 12 (𝑡𝐺) ∈ V
48 vex 3440 . . . . . . . . . . . 12 𝑡 ∈ V
497, 8, 2, 9, 13, 35, 3, 14, 47, 48dihopelvalcqat 41245 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (⟨(𝑡𝐺), 𝑡⟩ ∈ (𝐼𝑃) ↔ ((𝑡𝐺) = (𝑡𝐺) ∧ 𝑡𝐸)))
5045, 46, 49syl2anc 584 . . . . . . . . . 10 (((𝜑 ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑉) ∧ 𝑠 = 0 )) ∧ (𝑡𝐸 ∧ (𝑡‘(𝐺𝐷)) = 𝑓)) → (⟨(𝑡𝐺), 𝑡⟩ ∈ (𝐼𝑃) ↔ ((𝑡𝐺) = (𝑡𝐺) ∧ 𝑡𝐸)))
5143, 44, 50mpbir2and 713 . . . . . . . . 9 (((𝜑 ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑉) ∧ 𝑠 = 0 )) ∧ (𝑡𝐸 ∧ (𝑡‘(𝐺𝐷)) = 𝑓)) → ⟨(𝑡𝐺), 𝑡⟩ ∈ (𝐼𝑃))
52 eqidd 2730 . . . . . . . . . 10 (((𝜑 ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑉) ∧ 𝑠 = 0 )) ∧ (𝑡𝐸 ∧ (𝑡‘(𝐺𝐷)) = 𝑓)) → ((𝑁𝑡)‘𝐷) = ((𝑁𝑡)‘𝐷))
53 dihjatcc.n . . . . . . . . . . . 12 𝑁 = (𝑎𝐸 ↦ (𝑑𝑇(𝑎𝑑)))
542, 13, 35, 53tendoicl 40795 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑡𝐸) → (𝑁𝑡) ∈ 𝐸)
5545, 44, 54syl2anc 584 . . . . . . . . . 10 (((𝜑 ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑉) ∧ 𝑠 = 0 )) ∧ (𝑡𝐸 ∧ (𝑡‘(𝐺𝐷)) = 𝑓)) → (𝑁𝑡) ∈ 𝐸)
5617ad2antrr 726 . . . . . . . . . . 11 (((𝜑 ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑉) ∧ 𝑠 = 0 )) ∧ (𝑡𝐸 ∧ (𝑡‘(𝐺𝐷)) = 𝑓)) → (𝑄𝐴 ∧ ¬ 𝑄 𝑊))
57 fvex 6835 . . . . . . . . . . . 12 ((𝑁𝑡)‘𝐷) ∈ V
58 fvex 6835 . . . . . . . . . . . 12 (𝑁𝑡) ∈ V
597, 8, 2, 9, 13, 35, 3, 18, 57, 58dihopelvalcqat 41245 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → (⟨((𝑁𝑡)‘𝐷), (𝑁𝑡)⟩ ∈ (𝐼𝑄) ↔ (((𝑁𝑡)‘𝐷) = ((𝑁𝑡)‘𝐷) ∧ (𝑁𝑡) ∈ 𝐸)))
6045, 56, 59syl2anc 584 . . . . . . . . . 10 (((𝜑 ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑉) ∧ 𝑠 = 0 )) ∧ (𝑡𝐸 ∧ (𝑡‘(𝐺𝐷)) = 𝑓)) → (⟨((𝑁𝑡)‘𝐷), (𝑁𝑡)⟩ ∈ (𝐼𝑄) ↔ (((𝑁𝑡)‘𝐷) = ((𝑁𝑡)‘𝐷) ∧ (𝑁𝑡) ∈ 𝐸)))
6152, 55, 60mpbir2and 713 . . . . . . . . 9 (((𝜑 ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑉) ∧ 𝑠 = 0 )) ∧ (𝑡𝐸 ∧ (𝑡‘(𝐺𝐷)) = 𝑓)) → ⟨((𝑁𝑡)‘𝐷), (𝑁𝑡)⟩ ∈ (𝐼𝑄))
6216ad2antrr 726 . . . . . . . . . . 11 (((𝜑 ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑉) ∧ 𝑠 = 0 )) ∧ (𝑡𝐸 ∧ (𝑡‘(𝐺𝐷)) = 𝑓)) → 𝐺𝑇)
6322ad2antrr 726 . . . . . . . . . . 11 (((𝜑 ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑉) ∧ 𝑠 = 0 )) ∧ (𝑡𝐸 ∧ (𝑡‘(𝐺𝐷)) = 𝑓)) → 𝐷𝑇)
642, 13, 35tendospdi1 41019 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑡𝐸𝐺𝑇𝐷𝑇)) → (𝑡‘(𝐺𝐷)) = ((𝑡𝐺) ∘ (𝑡𝐷)))
6545, 44, 62, 63, 64syl13anc 1374 . . . . . . . . . 10 (((𝜑 ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑉) ∧ 𝑠 = 0 )) ∧ (𝑡𝐸 ∧ (𝑡‘(𝐺𝐷)) = 𝑓)) → (𝑡‘(𝐺𝐷)) = ((𝑡𝐺) ∘ (𝑡𝐷)))
66 simprr 772 . . . . . . . . . 10 (((𝜑 ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑉) ∧ 𝑠 = 0 )) ∧ (𝑡𝐸 ∧ (𝑡‘(𝐺𝐷)) = 𝑓)) → (𝑡‘(𝐺𝐷)) = 𝑓)
6720ad2antrr 726 . . . . . . . . . . . . 13 (((𝜑 ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑉) ∧ 𝑠 = 0 )) ∧ (𝑡𝐸 ∧ (𝑡‘(𝐺𝐷)) = 𝑓)) → 𝐷𝑇)
6853, 13tendoi2 40794 . . . . . . . . . . . . 13 ((𝑡𝐸𝐷𝑇) → ((𝑁𝑡)‘𝐷) = (𝑡𝐷))
6944, 67, 68syl2anc 584 . . . . . . . . . . . 12 (((𝜑 ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑉) ∧ 𝑠 = 0 )) ∧ (𝑡𝐸 ∧ (𝑡‘(𝐺𝐷)) = 𝑓)) → ((𝑁𝑡)‘𝐷) = (𝑡𝐷))
702, 13, 35tendocnv 41020 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑡𝐸𝐷𝑇) → (𝑡𝐷) = (𝑡𝐷))
7145, 44, 67, 70syl3anc 1373 . . . . . . . . . . . 12 (((𝜑 ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑉) ∧ 𝑠 = 0 )) ∧ (𝑡𝐸 ∧ (𝑡‘(𝐺𝐷)) = 𝑓)) → (𝑡𝐷) = (𝑡𝐷))
7269, 71eqtr2d 2765 . . . . . . . . . . 11 (((𝜑 ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑉) ∧ 𝑠 = 0 )) ∧ (𝑡𝐸 ∧ (𝑡‘(𝐺𝐷)) = 𝑓)) → (𝑡𝐷) = ((𝑁𝑡)‘𝐷))
7372coeq2d 5805 . . . . . . . . . 10 (((𝜑 ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑉) ∧ 𝑠 = 0 )) ∧ (𝑡𝐸 ∧ (𝑡‘(𝐺𝐷)) = 𝑓)) → ((𝑡𝐺) ∘ (𝑡𝐷)) = ((𝑡𝐺) ∘ ((𝑁𝑡)‘𝐷)))
7465, 66, 733eqtr3d 2772 . . . . . . . . 9 (((𝜑 ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑉) ∧ 𝑠 = 0 )) ∧ (𝑡𝐸 ∧ (𝑡‘(𝐺𝐷)) = 𝑓)) → 𝑓 = ((𝑡𝐺) ∘ ((𝑁𝑡)‘𝐷)))
75 simplrr 777 . . . . . . . . . 10 (((𝜑 ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑉) ∧ 𝑠 = 0 )) ∧ (𝑡𝐸 ∧ (𝑡‘(𝐺𝐷)) = 𝑓)) → 𝑠 = 0 )
76 dihjatcc.d . . . . . . . . . . . 12 𝐽 = (𝑎𝐸, 𝑏𝐸 ↦ (𝑑𝑇 ↦ ((𝑎𝑑) ∘ (𝑏𝑑))))
77 dihjatcc.o . . . . . . . . . . . 12 0 = (𝑑𝑇 ↦ ( I ↾ 𝐵))
782, 13, 35, 53, 28, 76, 77tendoipl2 40797 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑡𝐸) → (𝑡𝐽(𝑁𝑡)) = 0 )
7945, 44, 78syl2anc 584 . . . . . . . . . 10 (((𝜑 ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑉) ∧ 𝑠 = 0 )) ∧ (𝑡𝐸 ∧ (𝑡‘(𝐺𝐷)) = 𝑓)) → (𝑡𝐽(𝑁𝑡)) = 0 )
8075, 79eqtr4d 2767 . . . . . . . . 9 (((𝜑 ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑉) ∧ 𝑠 = 0 )) ∧ (𝑡𝐸 ∧ (𝑡‘(𝐺𝐷)) = 𝑓)) → 𝑠 = (𝑡𝐽(𝑁𝑡)))
81 opeq1 4824 . . . . . . . . . . . . . . 15 (𝑔 = (𝑡𝐺) → ⟨𝑔, 𝑡⟩ = ⟨(𝑡𝐺), 𝑡⟩)
8281eleq1d 2813 . . . . . . . . . . . . . 14 (𝑔 = (𝑡𝐺) → (⟨𝑔, 𝑡⟩ ∈ (𝐼𝑃) ↔ ⟨(𝑡𝐺), 𝑡⟩ ∈ (𝐼𝑃)))
8382anbi1d 631 . . . . . . . . . . . . 13 (𝑔 = (𝑡𝐺) → ((⟨𝑔, 𝑡⟩ ∈ (𝐼𝑃) ∧ ⟨, 𝑢⟩ ∈ (𝐼𝑄)) ↔ (⟨(𝑡𝐺), 𝑡⟩ ∈ (𝐼𝑃) ∧ ⟨, 𝑢⟩ ∈ (𝐼𝑄))))
84 coeq1 5800 . . . . . . . . . . . . . . 15 (𝑔 = (𝑡𝐺) → (𝑔) = ((𝑡𝐺) ∘ ))
8584eqeq2d 2740 . . . . . . . . . . . . . 14 (𝑔 = (𝑡𝐺) → (𝑓 = (𝑔) ↔ 𝑓 = ((𝑡𝐺) ∘ )))
8685anbi1d 631 . . . . . . . . . . . . 13 (𝑔 = (𝑡𝐺) → ((𝑓 = (𝑔) ∧ 𝑠 = (𝑡𝐽𝑢)) ↔ (𝑓 = ((𝑡𝐺) ∘ ) ∧ 𝑠 = (𝑡𝐽𝑢))))
8783, 86anbi12d 632 . . . . . . . . . . . 12 (𝑔 = (𝑡𝐺) → (((⟨𝑔, 𝑡⟩ ∈ (𝐼𝑃) ∧ ⟨, 𝑢⟩ ∈ (𝐼𝑄)) ∧ (𝑓 = (𝑔) ∧ 𝑠 = (𝑡𝐽𝑢))) ↔ ((⟨(𝑡𝐺), 𝑡⟩ ∈ (𝐼𝑃) ∧ ⟨, 𝑢⟩ ∈ (𝐼𝑄)) ∧ (𝑓 = ((𝑡𝐺) ∘ ) ∧ 𝑠 = (𝑡𝐽𝑢)))))
88 opeq1 4824 . . . . . . . . . . . . . . 15 ( = ((𝑁𝑡)‘𝐷) → ⟨, 𝑢⟩ = ⟨((𝑁𝑡)‘𝐷), 𝑢⟩)
8988eleq1d 2813 . . . . . . . . . . . . . 14 ( = ((𝑁𝑡)‘𝐷) → (⟨, 𝑢⟩ ∈ (𝐼𝑄) ↔ ⟨((𝑁𝑡)‘𝐷), 𝑢⟩ ∈ (𝐼𝑄)))
9089anbi2d 630 . . . . . . . . . . . . 13 ( = ((𝑁𝑡)‘𝐷) → ((⟨(𝑡𝐺), 𝑡⟩ ∈ (𝐼𝑃) ∧ ⟨, 𝑢⟩ ∈ (𝐼𝑄)) ↔ (⟨(𝑡𝐺), 𝑡⟩ ∈ (𝐼𝑃) ∧ ⟨((𝑁𝑡)‘𝐷), 𝑢⟩ ∈ (𝐼𝑄))))
91 coeq2 5801 . . . . . . . . . . . . . . 15 ( = ((𝑁𝑡)‘𝐷) → ((𝑡𝐺) ∘ ) = ((𝑡𝐺) ∘ ((𝑁𝑡)‘𝐷)))
9291eqeq2d 2740 . . . . . . . . . . . . . 14 ( = ((𝑁𝑡)‘𝐷) → (𝑓 = ((𝑡𝐺) ∘ ) ↔ 𝑓 = ((𝑡𝐺) ∘ ((𝑁𝑡)‘𝐷))))
9392anbi1d 631 . . . . . . . . . . . . 13 ( = ((𝑁𝑡)‘𝐷) → ((𝑓 = ((𝑡𝐺) ∘ ) ∧ 𝑠 = (𝑡𝐽𝑢)) ↔ (𝑓 = ((𝑡𝐺) ∘ ((𝑁𝑡)‘𝐷)) ∧ 𝑠 = (𝑡𝐽𝑢))))
9490, 93anbi12d 632 . . . . . . . . . . . 12 ( = ((𝑁𝑡)‘𝐷) → (((⟨(𝑡𝐺), 𝑡⟩ ∈ (𝐼𝑃) ∧ ⟨, 𝑢⟩ ∈ (𝐼𝑄)) ∧ (𝑓 = ((𝑡𝐺) ∘ ) ∧ 𝑠 = (𝑡𝐽𝑢))) ↔ ((⟨(𝑡𝐺), 𝑡⟩ ∈ (𝐼𝑃) ∧ ⟨((𝑁𝑡)‘𝐷), 𝑢⟩ ∈ (𝐼𝑄)) ∧ (𝑓 = ((𝑡𝐺) ∘ ((𝑁𝑡)‘𝐷)) ∧ 𝑠 = (𝑡𝐽𝑢)))))
95 opeq2 4825 . . . . . . . . . . . . . . 15 (𝑢 = (𝑁𝑡) → ⟨((𝑁𝑡)‘𝐷), 𝑢⟩ = ⟨((𝑁𝑡)‘𝐷), (𝑁𝑡)⟩)
9695eleq1d 2813 . . . . . . . . . . . . . 14 (𝑢 = (𝑁𝑡) → (⟨((𝑁𝑡)‘𝐷), 𝑢⟩ ∈ (𝐼𝑄) ↔ ⟨((𝑁𝑡)‘𝐷), (𝑁𝑡)⟩ ∈ (𝐼𝑄)))
9796anbi2d 630 . . . . . . . . . . . . 13 (𝑢 = (𝑁𝑡) → ((⟨(𝑡𝐺), 𝑡⟩ ∈ (𝐼𝑃) ∧ ⟨((𝑁𝑡)‘𝐷), 𝑢⟩ ∈ (𝐼𝑄)) ↔ (⟨(𝑡𝐺), 𝑡⟩ ∈ (𝐼𝑃) ∧ ⟨((𝑁𝑡)‘𝐷), (𝑁𝑡)⟩ ∈ (𝐼𝑄))))
98 oveq2 7357 . . . . . . . . . . . . . . 15 (𝑢 = (𝑁𝑡) → (𝑡𝐽𝑢) = (𝑡𝐽(𝑁𝑡)))
9998eqeq2d 2740 . . . . . . . . . . . . . 14 (𝑢 = (𝑁𝑡) → (𝑠 = (𝑡𝐽𝑢) ↔ 𝑠 = (𝑡𝐽(𝑁𝑡))))
10099anbi2d 630 . . . . . . . . . . . . 13 (𝑢 = (𝑁𝑡) → ((𝑓 = ((𝑡𝐺) ∘ ((𝑁𝑡)‘𝐷)) ∧ 𝑠 = (𝑡𝐽𝑢)) ↔ (𝑓 = ((𝑡𝐺) ∘ ((𝑁𝑡)‘𝐷)) ∧ 𝑠 = (𝑡𝐽(𝑁𝑡)))))
10197, 100anbi12d 632 . . . . . . . . . . . 12 (𝑢 = (𝑁𝑡) → (((⟨(𝑡𝐺), 𝑡⟩ ∈ (𝐼𝑃) ∧ ⟨((𝑁𝑡)‘𝐷), 𝑢⟩ ∈ (𝐼𝑄)) ∧ (𝑓 = ((𝑡𝐺) ∘ ((𝑁𝑡)‘𝐷)) ∧ 𝑠 = (𝑡𝐽𝑢))) ↔ ((⟨(𝑡𝐺), 𝑡⟩ ∈ (𝐼𝑃) ∧ ⟨((𝑁𝑡)‘𝐷), (𝑁𝑡)⟩ ∈ (𝐼𝑄)) ∧ (𝑓 = ((𝑡𝐺) ∘ ((𝑁𝑡)‘𝐷)) ∧ 𝑠 = (𝑡𝐽(𝑁𝑡))))))
10287, 94, 101syl3an9b 1436 . . . . . . . . . . 11 ((𝑔 = (𝑡𝐺) ∧ = ((𝑁𝑡)‘𝐷) ∧ 𝑢 = (𝑁𝑡)) → (((⟨𝑔, 𝑡⟩ ∈ (𝐼𝑃) ∧ ⟨, 𝑢⟩ ∈ (𝐼𝑄)) ∧ (𝑓 = (𝑔) ∧ 𝑠 = (𝑡𝐽𝑢))) ↔ ((⟨(𝑡𝐺), 𝑡⟩ ∈ (𝐼𝑃) ∧ ⟨((𝑁𝑡)‘𝐷), (𝑁𝑡)⟩ ∈ (𝐼𝑄)) ∧ (𝑓 = ((𝑡𝐺) ∘ ((𝑁𝑡)‘𝐷)) ∧ 𝑠 = (𝑡𝐽(𝑁𝑡))))))
103102spc3egv 3558 . . . . . . . . . 10 (((𝑡𝐺) ∈ V ∧ ((𝑁𝑡)‘𝐷) ∈ V ∧ (𝑁𝑡) ∈ V) → (((⟨(𝑡𝐺), 𝑡⟩ ∈ (𝐼𝑃) ∧ ⟨((𝑁𝑡)‘𝐷), (𝑁𝑡)⟩ ∈ (𝐼𝑄)) ∧ (𝑓 = ((𝑡𝐺) ∘ ((𝑁𝑡)‘𝐷)) ∧ 𝑠 = (𝑡𝐽(𝑁𝑡)))) → ∃𝑔𝑢((⟨𝑔, 𝑡⟩ ∈ (𝐼𝑃) ∧ ⟨, 𝑢⟩ ∈ (𝐼𝑄)) ∧ (𝑓 = (𝑔) ∧ 𝑠 = (𝑡𝐽𝑢)))))
10447, 57, 58, 103mp3an 1463 . . . . . . . . 9 (((⟨(𝑡𝐺), 𝑡⟩ ∈ (𝐼𝑃) ∧ ⟨((𝑁𝑡)‘𝐷), (𝑁𝑡)⟩ ∈ (𝐼𝑄)) ∧ (𝑓 = ((𝑡𝐺) ∘ ((𝑁𝑡)‘𝐷)) ∧ 𝑠 = (𝑡𝐽(𝑁𝑡)))) → ∃𝑔𝑢((⟨𝑔, 𝑡⟩ ∈ (𝐼𝑃) ∧ ⟨, 𝑢⟩ ∈ (𝐼𝑄)) ∧ (𝑓 = (𝑔) ∧ 𝑠 = (𝑡𝐽𝑢))))
10551, 61, 74, 80, 104syl22anc 838 . . . . . . . 8 (((𝜑 ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑉) ∧ 𝑠 = 0 )) ∧ (𝑡𝐸 ∧ (𝑡‘(𝐺𝐷)) = 𝑓)) → ∃𝑔𝑢((⟨𝑔, 𝑡⟩ ∈ (𝐼𝑃) ∧ ⟨, 𝑢⟩ ∈ (𝐼𝑄)) ∧ (𝑓 = (𝑔) ∧ 𝑠 = (𝑡𝐽𝑢))))
106105ex 412 . . . . . . 7 ((𝜑 ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑉) ∧ 𝑠 = 0 )) → ((𝑡𝐸 ∧ (𝑡‘(𝐺𝐷)) = 𝑓) → ∃𝑔𝑢((⟨𝑔, 𝑡⟩ ∈ (𝐼𝑃) ∧ ⟨, 𝑢⟩ ∈ (𝐼𝑄)) ∧ (𝑓 = (𝑔) ∧ 𝑠 = (𝑡𝐽𝑢)))))
107106eximdv 1917 . . . . . 6 ((𝜑 ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑉) ∧ 𝑠 = 0 )) → (∃𝑡(𝑡𝐸 ∧ (𝑡‘(𝐺𝐷)) = 𝑓) → ∃𝑡𝑔𝑢((⟨𝑔, 𝑡⟩ ∈ (𝐼𝑃) ∧ ⟨, 𝑢⟩ ∈ (𝐼𝑄)) ∧ (𝑓 = (𝑔) ∧ 𝑠 = (𝑡𝐽𝑢)))))
108 excom 2163 . . . . . 6 (∃𝑡𝑔𝑢((⟨𝑔, 𝑡⟩ ∈ (𝐼𝑃) ∧ ⟨, 𝑢⟩ ∈ (𝐼𝑄)) ∧ (𝑓 = (𝑔) ∧ 𝑠 = (𝑡𝐽𝑢))) ↔ ∃𝑔𝑡𝑢((⟨𝑔, 𝑡⟩ ∈ (𝐼𝑃) ∧ ⟨, 𝑢⟩ ∈ (𝐼𝑄)) ∧ (𝑓 = (𝑔) ∧ 𝑠 = (𝑡𝐽𝑢))))
109107, 108imbitrdi 251 . . . . 5 ((𝜑 ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑉) ∧ 𝑠 = 0 )) → (∃𝑡(𝑡𝐸 ∧ (𝑡‘(𝐺𝐷)) = 𝑓) → ∃𝑔𝑡𝑢((⟨𝑔, 𝑡⟩ ∈ (𝐼𝑃) ∧ ⟨, 𝑢⟩ ∈ (𝐼𝑄)) ∧ (𝑓 = (𝑔) ∧ 𝑠 = (𝑡𝐽𝑢)))))
11042, 109mpd 15 . . . 4 ((𝜑 ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑉) ∧ 𝑠 = 0 )) → ∃𝑔𝑡𝑢((⟨𝑔, 𝑡⟩ ∈ (𝐼𝑃) ∧ ⟨, 𝑢⟩ ∈ (𝐼𝑄)) ∧ (𝑓 = (𝑔) ∧ 𝑠 = (𝑡𝐽𝑢))))
111110ex 412 . . 3 (𝜑 → (((𝑓𝑇 ∧ (𝑅𝑓) 𝑉) ∧ 𝑠 = 0 ) → ∃𝑔𝑡𝑢((⟨𝑔, 𝑡⟩ ∈ (𝐼𝑃) ∧ ⟨, 𝑢⟩ ∈ (𝐼𝑄)) ∧ (𝑓 = (𝑔) ∧ 𝑠 = (𝑡𝐽𝑢)))))
1121simpld 494 . . . . . . . . 9 (𝜑𝐾 ∈ HL)
113112hllatd 39363 . . . . . . . 8 (𝜑𝐾 ∈ Lat)
11412simpld 494 . . . . . . . . 9 (𝜑𝑃𝐴)
11517simpld 494 . . . . . . . . 9 (𝜑𝑄𝐴)
11628, 29, 8hlatjcl 39366 . . . . . . . . 9 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → (𝑃 𝑄) ∈ 𝐵)
117112, 114, 115, 116syl3anc 1373 . . . . . . . 8 (𝜑 → (𝑃 𝑄) ∈ 𝐵)
1181simprd 495 . . . . . . . . 9 (𝜑𝑊𝐻)
11928, 2lhpbase 39997 . . . . . . . . 9 (𝑊𝐻𝑊𝐵)
120118, 119syl 17 . . . . . . . 8 (𝜑𝑊𝐵)
12128, 30latmcl 18346 . . . . . . . 8 ((𝐾 ∈ Lat ∧ (𝑃 𝑄) ∈ 𝐵𝑊𝐵) → ((𝑃 𝑄) 𝑊) ∈ 𝐵)
122113, 117, 120, 121syl3anc 1373 . . . . . . 7 (𝜑 → ((𝑃 𝑄) 𝑊) ∈ 𝐵)
12333, 122eqeltrid 2832 . . . . . 6 (𝜑𝑉𝐵)
12428, 7, 30latmle2 18371 . . . . . . . 8 ((𝐾 ∈ Lat ∧ (𝑃 𝑄) ∈ 𝐵𝑊𝐵) → ((𝑃 𝑄) 𝑊) 𝑊)
125113, 117, 120, 124syl3anc 1373 . . . . . . 7 (𝜑 → ((𝑃 𝑄) 𝑊) 𝑊)
12633, 125eqbrtrid 5127 . . . . . 6 (𝜑𝑉 𝑊)
127 eqid 2729 . . . . . . 7 ((DIsoB‘𝐾)‘𝑊) = ((DIsoB‘𝐾)‘𝑊)
12828, 7, 2, 3, 127dihvalb 41236 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑉𝐵𝑉 𝑊)) → (𝐼𝑉) = (((DIsoB‘𝐾)‘𝑊)‘𝑉))
1291, 123, 126, 128syl12anc 836 . . . . 5 (𝜑 → (𝐼𝑉) = (((DIsoB‘𝐾)‘𝑊)‘𝑉))
130129eleq2d 2814 . . . 4 (𝜑 → (⟨𝑓, 𝑠⟩ ∈ (𝐼𝑉) ↔ ⟨𝑓, 𝑠⟩ ∈ (((DIsoB‘𝐾)‘𝑊)‘𝑉)))
13128, 7, 2, 13, 34, 77, 127dibopelval3 41147 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑉𝐵𝑉 𝑊)) → (⟨𝑓, 𝑠⟩ ∈ (((DIsoB‘𝐾)‘𝑊)‘𝑉) ↔ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑉) ∧ 𝑠 = 0 )))
1321, 123, 126, 131syl12anc 836 . . . 4 (𝜑 → (⟨𝑓, 𝑠⟩ ∈ (((DIsoB‘𝐾)‘𝑊)‘𝑉) ↔ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑉) ∧ 𝑠 = 0 )))
133130, 132bitrd 279 . . 3 (𝜑 → (⟨𝑓, 𝑠⟩ ∈ (𝐼𝑉) ↔ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑉) ∧ 𝑠 = 0 )))
134 eqid 2729 . . . 4 (LSubSp‘𝑈) = (LSubSp‘𝑈)
13528, 8atbase 39288 . . . . 5 (𝑃𝐴𝑃𝐵)
136114, 135syl 17 . . . 4 (𝜑𝑃𝐵)
13728, 8atbase 39288 . . . . 5 (𝑄𝐴𝑄𝐵)
138115, 137syl 17 . . . 4 (𝜑𝑄𝐵)
13928, 2, 13, 35, 76, 31, 134, 32, 3, 1, 136, 138dihopellsm 41254 . . 3 (𝜑 → (⟨𝑓, 𝑠⟩ ∈ ((𝐼𝑃) (𝐼𝑄)) ↔ ∃𝑔𝑡𝑢((⟨𝑔, 𝑡⟩ ∈ (𝐼𝑃) ∧ ⟨, 𝑢⟩ ∈ (𝐼𝑄)) ∧ (𝑓 = (𝑔) ∧ 𝑠 = (𝑡𝐽𝑢)))))
140111, 133, 1393imtr4d 294 . 2 (𝜑 → (⟨𝑓, 𝑠⟩ ∈ (𝐼𝑉) → ⟨𝑓, 𝑠⟩ ∈ ((𝐼𝑃) (𝐼𝑄))))
1415, 140relssdv 5731 1 (𝜑 → (𝐼𝑉) ⊆ ((𝐼𝑃) (𝐼𝑄)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wex 1779  wcel 2109  wrex 3053  Vcvv 3436  wss 3903  cop 4583   class class class wbr 5092  cmpt 5173   I cid 5513  ccnv 5618  cres 5621  ccom 5623  Rel wrel 5624  cfv 6482  crio 7305  (class class class)co 7349  cmpo 7351  Basecbs 17120  lecple 17168  occoc 17169  joincjn 18217  meetcmee 18218  Latclat 18337  LSSumclsm 19513  LSubSpclss 20834  Atomscatm 39262  HLchlt 39349  LHypclh 39983  LTrncltrn 40100  trLctrl 40157  TEndoctendo 40751  DVecHcdvh 41077  DIsoBcdib 41137  DIsoHcdih 41227
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-riotaBAD 38952
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-iin 4944  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-tpos 8159  df-undef 8206  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-er 8625  df-map 8755  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-nn 12129  df-2 12191  df-3 12192  df-4 12193  df-5 12194  df-6 12195  df-n0 12385  df-z 12472  df-uz 12736  df-fz 13411  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-sca 17177  df-vsca 17178  df-0g 17345  df-proset 18200  df-poset 18219  df-plt 18234  df-lub 18250  df-glb 18251  df-join 18252  df-meet 18253  df-p0 18329  df-p1 18330  df-lat 18338  df-clat 18405  df-mgm 18514  df-sgrp 18593  df-mnd 18609  df-submnd 18658  df-grp 18815  df-minusg 18816  df-sbg 18817  df-subg 19002  df-cntz 19196  df-lsm 19515  df-cmn 19661  df-abl 19662  df-mgp 20026  df-rng 20038  df-ur 20067  df-ring 20120  df-oppr 20222  df-dvdsr 20242  df-unit 20243  df-invr 20273  df-dvr 20286  df-drng 20616  df-lmod 20765  df-lss 20835  df-lsp 20875  df-lvec 21007  df-oposet 39175  df-ol 39177  df-oml 39178  df-covers 39265  df-ats 39266  df-atl 39297  df-cvlat 39321  df-hlat 39350  df-llines 39497  df-lplanes 39498  df-lvols 39499  df-lines 39500  df-psubsp 39502  df-pmap 39503  df-padd 39795  df-lhyp 39987  df-laut 39988  df-ldil 40103  df-ltrn 40104  df-trl 40158  df-tendo 40754  df-edring 40756  df-disoa 41028  df-dvech 41078  df-dib 41138  df-dic 41172  df-dih 41228
This theorem is referenced by:  dihjatcc  41421
  Copyright terms: Public domain W3C validator