|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > eloprabg | Structured version Visualization version GIF version | ||
| Description: The law of concretion for operation class abstraction. Compare elopab 5532. (Contributed by NM, 14-Sep-1999.) (Revised by David Abernethy, 19-Jun-2012.) | 
| Ref | Expression | 
|---|---|
| eloprabg.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | 
| eloprabg.2 | ⊢ (𝑦 = 𝐵 → (𝜓 ↔ 𝜒)) | 
| eloprabg.3 | ⊢ (𝑧 = 𝐶 → (𝜒 ↔ 𝜃)) | 
| Ref | Expression | 
|---|---|
| eloprabg | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) → (〈〈𝐴, 𝐵〉, 𝐶〉 ∈ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} ↔ 𝜃)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | eloprabg.1 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
| 2 | eloprabg.2 | . . 3 ⊢ (𝑦 = 𝐵 → (𝜓 ↔ 𝜒)) | |
| 3 | eloprabg.3 | . . 3 ⊢ (𝑧 = 𝐶 → (𝜒 ↔ 𝜃)) | |
| 4 | 1, 2, 3 | syl3an9b 1436 | . 2 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ∧ 𝑧 = 𝐶) → (𝜑 ↔ 𝜃)) | 
| 5 | 4 | eloprabga 7542 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) → (〈〈𝐴, 𝐵〉, 𝐶〉 ∈ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} ↔ 𝜃)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 206 ∧ w3a 1087 = wceq 1540 ∈ wcel 2108 〈cop 4632 {coprab 7432 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pr 5432 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-rab 3437 df-v 3482 df-dif 3954 df-un 3956 df-ss 3968 df-nul 4334 df-if 4526 df-sn 4627 df-pr 4629 df-op 4633 df-oprab 7435 | 
| This theorem is referenced by: ov 7577 ovg 7598 brbtwn 28914 isnvlem 30629 isphg 30836 fvtransport 36033 brcolinear2 36059 colineardim1 36062 fvray 36142 fvline 36145 | 
| Copyright terms: Public domain | W3C validator |