MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eloprabg Structured version   Visualization version   GIF version

Theorem eloprabg 7025
Description: The law of concretion for operation class abstraction. Compare elopab 5220. (Contributed by NM, 14-Sep-1999.) (Revised by David Abernethy, 19-Jun-2012.)
Hypotheses
Ref Expression
eloprabg.1 (𝑥 = 𝐴 → (𝜑𝜓))
eloprabg.2 (𝑦 = 𝐵 → (𝜓𝜒))
eloprabg.3 (𝑧 = 𝐶 → (𝜒𝜃))
Assertion
Ref Expression
eloprabg ((𝐴𝑉𝐵𝑊𝐶𝑋) → (⟨⟨𝐴, 𝐵⟩, 𝐶⟩ ∈ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} ↔ 𝜃))
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝑥,𝐵,𝑦,𝑧   𝑥,𝐶,𝑦,𝑧   𝜃,𝑥,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)   𝜓(𝑥,𝑦,𝑧)   𝜒(𝑥,𝑦,𝑧)   𝑉(𝑥,𝑦,𝑧)   𝑊(𝑥,𝑦,𝑧)   𝑋(𝑥,𝑦,𝑧)

Proof of Theorem eloprabg
StepHypRef Expression
1 eloprabg.1 . . 3 (𝑥 = 𝐴 → (𝜑𝜓))
2 eloprabg.2 . . 3 (𝑦 = 𝐵 → (𝜓𝜒))
3 eloprabg.3 . . 3 (𝑧 = 𝐶 → (𝜒𝜃))
41, 2, 3syl3an9b 1507 . 2 ((𝑥 = 𝐴𝑦 = 𝐵𝑧 = 𝐶) → (𝜑𝜃))
54eloprabga 7024 1 ((𝐴𝑉𝐵𝑊𝐶𝑋) → (⟨⟨𝐴, 𝐵⟩, 𝐶⟩ ∈ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} ↔ 𝜃))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  w3a 1071   = wceq 1601  wcel 2107  cop 4404  {coprab 6923
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-sep 5017  ax-nul 5025  ax-pr 5138
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-rab 3099  df-v 3400  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-nul 4142  df-if 4308  df-sn 4399  df-pr 4401  df-op 4405  df-oprab 6926
This theorem is referenced by:  ov  7057  ovg  7076  brbtwn  26248  isnvlem  28037  isphg  28244  fvtransport  32728  brcolinear2  32754  colineardim1  32757  fvray  32837  fvline  32840
  Copyright terms: Public domain W3C validator