Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > eloprabg | Structured version Visualization version GIF version |
Description: The law of concretion for operation class abstraction. Compare elopab 5441. (Contributed by NM, 14-Sep-1999.) (Revised by David Abernethy, 19-Jun-2012.) |
Ref | Expression |
---|---|
eloprabg.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
eloprabg.2 | ⊢ (𝑦 = 𝐵 → (𝜓 ↔ 𝜒)) |
eloprabg.3 | ⊢ (𝑧 = 𝐶 → (𝜒 ↔ 𝜃)) |
Ref | Expression |
---|---|
eloprabg | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) → (〈〈𝐴, 𝐵〉, 𝐶〉 ∈ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} ↔ 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eloprabg.1 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
2 | eloprabg.2 | . . 3 ⊢ (𝑦 = 𝐵 → (𝜓 ↔ 𝜒)) | |
3 | eloprabg.3 | . . 3 ⊢ (𝑧 = 𝐶 → (𝜒 ↔ 𝜃)) | |
4 | 1, 2, 3 | syl3an9b 1432 | . 2 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ∧ 𝑧 = 𝐶) → (𝜑 ↔ 𝜃)) |
5 | 4 | eloprabga 7373 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) → (〈〈𝐴, 𝐵〉, 𝐶〉 ∈ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} ↔ 𝜃)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ w3a 1085 = wceq 1541 ∈ wcel 2109 〈cop 4572 {coprab 7269 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-12 2174 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pr 5355 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-sb 2071 df-clab 2717 df-cleq 2731 df-clel 2817 df-rab 3074 df-v 3432 df-dif 3894 df-un 3896 df-nul 4262 df-if 4465 df-sn 4567 df-pr 4569 df-op 4573 df-oprab 7272 |
This theorem is referenced by: ov 7408 ovg 7428 brbtwn 27248 isnvlem 28951 isphg 29158 fvtransport 34313 brcolinear2 34339 colineardim1 34342 fvray 34422 fvline 34425 |
Copyright terms: Public domain | W3C validator |