![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eloprabg | Structured version Visualization version GIF version |
Description: The law of concretion for operation class abstraction. Compare elopab 5527. (Contributed by NM, 14-Sep-1999.) (Revised by David Abernethy, 19-Jun-2012.) |
Ref | Expression |
---|---|
eloprabg.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
eloprabg.2 | ⊢ (𝑦 = 𝐵 → (𝜓 ↔ 𝜒)) |
eloprabg.3 | ⊢ (𝑧 = 𝐶 → (𝜒 ↔ 𝜃)) |
Ref | Expression |
---|---|
eloprabg | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) → (⟨⟨𝐴, 𝐵⟩, 𝐶⟩ ∈ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} ↔ 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eloprabg.1 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
2 | eloprabg.2 | . . 3 ⊢ (𝑦 = 𝐵 → (𝜓 ↔ 𝜒)) | |
3 | eloprabg.3 | . . 3 ⊢ (𝑧 = 𝐶 → (𝜒 ↔ 𝜃)) | |
4 | 1, 2, 3 | syl3an9b 1434 | . 2 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ∧ 𝑧 = 𝐶) → (𝜑 ↔ 𝜃)) |
5 | 4 | eloprabga 7518 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) → (⟨⟨𝐴, 𝐵⟩, 𝐶⟩ ∈ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} ↔ 𝜃)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ w3a 1087 = wceq 1541 ∈ wcel 2106 ⟨cop 4634 {coprab 7412 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-rab 3433 df-v 3476 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-oprab 7415 |
This theorem is referenced by: ov 7554 ovg 7574 brbtwn 28195 isnvlem 29901 isphg 30108 fvtransport 35073 brcolinear2 35099 colineardim1 35102 fvray 35182 fvline 35185 |
Copyright terms: Public domain | W3C validator |