MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eloprabg Structured version   Visualization version   GIF version

Theorem eloprabg 7560
Description: The law of concretion for operation class abstraction. Compare elopab 5546. (Contributed by NM, 14-Sep-1999.) (Revised by David Abernethy, 19-Jun-2012.)
Hypotheses
Ref Expression
eloprabg.1 (𝑥 = 𝐴 → (𝜑𝜓))
eloprabg.2 (𝑦 = 𝐵 → (𝜓𝜒))
eloprabg.3 (𝑧 = 𝐶 → (𝜒𝜃))
Assertion
Ref Expression
eloprabg ((𝐴𝑉𝐵𝑊𝐶𝑋) → (⟨⟨𝐴, 𝐵⟩, 𝐶⟩ ∈ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} ↔ 𝜃))
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝑥,𝐵,𝑦,𝑧   𝑥,𝐶,𝑦,𝑧   𝜃,𝑥,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)   𝜓(𝑥,𝑦,𝑧)   𝜒(𝑥,𝑦,𝑧)   𝑉(𝑥,𝑦,𝑧)   𝑊(𝑥,𝑦,𝑧)   𝑋(𝑥,𝑦,𝑧)

Proof of Theorem eloprabg
StepHypRef Expression
1 eloprabg.1 . . 3 (𝑥 = 𝐴 → (𝜑𝜓))
2 eloprabg.2 . . 3 (𝑦 = 𝐵 → (𝜓𝜒))
3 eloprabg.3 . . 3 (𝑧 = 𝐶 → (𝜒𝜃))
41, 2, 3syl3an9b 1434 . 2 ((𝑥 = 𝐴𝑦 = 𝐵𝑧 = 𝐶) → (𝜑𝜃))
54eloprabga 7558 1 ((𝐴𝑉𝐵𝑊𝐶𝑋) → (⟨⟨𝐴, 𝐵⟩, 𝐶⟩ ∈ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} ↔ 𝜃))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  w3a 1087   = wceq 1537  wcel 2108  cop 4654  {coprab 7449
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-oprab 7452
This theorem is referenced by:  ov  7594  ovg  7615  brbtwn  28932  isnvlem  30642  isphg  30849  fvtransport  35996  brcolinear2  36022  colineardim1  36025  fvray  36105  fvline  36108
  Copyright terms: Public domain W3C validator