![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eloprabg | Structured version Visualization version GIF version |
Description: The law of concretion for operation class abstraction. Compare elopab 5220. (Contributed by NM, 14-Sep-1999.) (Revised by David Abernethy, 19-Jun-2012.) |
Ref | Expression |
---|---|
eloprabg.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
eloprabg.2 | ⊢ (𝑦 = 𝐵 → (𝜓 ↔ 𝜒)) |
eloprabg.3 | ⊢ (𝑧 = 𝐶 → (𝜒 ↔ 𝜃)) |
Ref | Expression |
---|---|
eloprabg | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) → (〈〈𝐴, 𝐵〉, 𝐶〉 ∈ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} ↔ 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eloprabg.1 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
2 | eloprabg.2 | . . 3 ⊢ (𝑦 = 𝐵 → (𝜓 ↔ 𝜒)) | |
3 | eloprabg.3 | . . 3 ⊢ (𝑧 = 𝐶 → (𝜒 ↔ 𝜃)) | |
4 | 1, 2, 3 | syl3an9b 1507 | . 2 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ∧ 𝑧 = 𝐶) → (𝜑 ↔ 𝜃)) |
5 | 4 | eloprabga 7024 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) → (〈〈𝐴, 𝐵〉, 𝐶〉 ∈ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} ↔ 𝜃)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ w3a 1071 = wceq 1601 ∈ wcel 2107 〈cop 4404 {coprab 6923 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-sep 5017 ax-nul 5025 ax-pr 5138 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-rab 3099 df-v 3400 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-nul 4142 df-if 4308 df-sn 4399 df-pr 4401 df-op 4405 df-oprab 6926 |
This theorem is referenced by: ov 7057 ovg 7076 brbtwn 26248 isnvlem 28037 isphg 28244 fvtransport 32728 brcolinear2 32754 colineardim1 32757 fvray 32837 fvline 32840 |
Copyright terms: Public domain | W3C validator |