![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > biantrur | Structured version Visualization version GIF version |
Description: A wff is equivalent to its conjunction with truth. (Contributed by NM, 3-Aug-1994.) |
Ref | Expression |
---|---|
biantrur.1 | ⊢ 𝜑 |
Ref | Expression |
---|---|
biantrur | ⊢ (𝜓 ↔ (𝜑 ∧ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | biantrur.1 | . . 3 ⊢ 𝜑 | |
2 | 1 | biantru 529 | . 2 ⊢ (𝜓 ↔ (𝜓 ∧ 𝜑)) |
3 | 2 | biancomi 462 | 1 ⊢ (𝜓 ↔ (𝜑 ∧ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 |
This theorem is referenced by: mpbiran 708 cases 1043 truan 1548 2sb5rf 2480 euae 2663 rexv 3517 reuv 3518 rmov 3519 rabab 3520 euxfrw 3743 euxfr 3745 euind 3746 dfdif3OLD 4141 ddif 4164 nssinpss 4286 nsspssun 4287 notabw 4332 vss 4469 reuprg0 4727 reuprg 4728 difsnpss 4832 sspr 4860 sstp 4861 disjprg 5162 mptv 5282 reusv2lem5 5420 oteqex2 5518 dfid4 5594 intirr 6150 xpcan 6207 resssxp 6301 fvopab6 7063 fnressn 7192 riotav 7409 mpov 7562 sorpss 7763 opabn1stprc 8099 fparlem2 8154 fnsuppres 8232 brtpos0 8274 naddrid 8739 sup0riota 9534 genpass 11078 nnwos 12980 hashbclem 14501 ccatlcan 14766 clim0 15552 gcd0id 16565 isdomn3 20737 pjfval2 21752 mat1dimbas 22499 pmatcollpw2lem 22804 isbasis3g 22977 opnssneib 23144 ssidcn 23284 qtopcld 23742 mdegleb 26123 vieta1 26372 lgsne0 27397 axpasch 28974 0wlk 30148 0clwlk 30162 shlesb1i 31418 chnlei 31517 pjneli 31755 cvexchlem 32400 dmdbr5ati 32454 elimifd 32566 fzo0opth 32810 1arithidom 33530 lmxrge0 33898 cntnevol 34192 bnj110 34834 goeleq12bg 35317 fmlafvel 35353 elpotr 35745 dfbigcup2 35863 bj-rexvw 36846 bj-rababw 36847 bj-brab2a1 37115 finxpreclem4 37360 wl-cases2-dnf 37466 wl-euae 37471 wl-dfclab 37550 cnambfre 37628 triantru3 38184 lub0N 39145 glb0N 39149 cvlsupr3 39300 ifpdfor2 43423 ifpdfor 43427 ifpim1 43431 ifpid2 43433 ifpim2 43434 ifpid2g 43455 ifpid1g 43456 ifpim23g 43457 ifpim1g 43463 ifpimimb 43466 rp-isfinite6 43480 rababg 43536 relnonrel 43549 dffrege115 43940 funressnfv 46958 dfnelbr2 47188 edgusgrclnbfin 47714 |
Copyright terms: Public domain | W3C validator |