| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > biantrur | Structured version Visualization version GIF version | ||
| Description: A wff is equivalent to its conjunction with truth. (Contributed by NM, 3-Aug-1994.) |
| Ref | Expression |
|---|---|
| biantrur.1 | ⊢ 𝜑 |
| Ref | Expression |
|---|---|
| biantrur | ⊢ (𝜓 ↔ (𝜑 ∧ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | biantrur.1 | . . 3 ⊢ 𝜑 | |
| 2 | 1 | biantru 529 | . 2 ⊢ (𝜓 ↔ (𝜓 ∧ 𝜑)) |
| 3 | 2 | biancomi 462 | 1 ⊢ (𝜓 ↔ (𝜑 ∧ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: mpbiran 709 cases 1042 truan 1552 2sb5rf 2472 euae 2655 rexv 3464 reuv 3465 rmov 3466 rabab 3467 euxfrw 3675 euxfr 3677 euind 3678 dfdif3OLD 4065 ddif 4088 nssinpss 4214 nsspssun 4215 notabw 4260 vss 4393 reuprg0 4652 reuprg 4653 difsnpss 4756 sspr 4784 sstp 4785 disjprg 5085 mptv 5195 reusv2lem5 5338 oteqex2 5437 dfid4 5510 intirr 6064 xpcan 6123 resssxp 6217 fvopab6 6963 fnressn 7091 riotav 7308 mpov 7458 sorpss 7661 opabn1stprc 7990 fparlem2 8043 fnsuppres 8121 brtpos0 8163 naddrid 8598 sup0riota 9350 genpass 10900 nnwos 12813 hashbclem 14359 ccatlcan 14625 clim0 15413 gcd0id 16430 isdomn3 20630 pjfval2 21646 mat1dimbas 22387 pmatcollpw2lem 22692 isbasis3g 22864 opnssneib 23030 ssidcn 23170 qtopcld 23628 mdegleb 25996 vieta1 26247 lgsne0 27273 axpasch 28919 0wlk 30096 0clwlk 30110 shlesb1i 31366 chnlei 31465 pjneli 31703 cvexchlem 32348 dmdbr5ati 32402 elimifd 32523 fzo0opth 32785 1arithidom 33502 lmxrge0 33965 cntnevol 34241 bnj110 34870 vonf1owev 35152 goeleq12bg 35393 fmlafvel 35429 elpotr 35823 dfbigcup2 35941 bj-rexvw 36924 bj-rababw 36925 bj-brab2a1 37193 finxpreclem4 37438 wl-cases2-dnf 37556 wl-euae 37561 wl-dfclab 37640 cnambfre 37718 triantru3 38281 lub0N 39298 glb0N 39302 cvlsupr3 39453 ifpdfor2 43564 ifpdfor 43568 ifpim1 43572 ifpid2 43574 ifpim2 43575 ifpid2g 43596 ifpid1g 43597 ifpim23g 43598 ifpim1g 43604 ifpimimb 43607 rp-isfinite6 43621 rababg 43677 relnonrel 43690 dffrege115 44081 chnsubseqwl 46987 funressnfv 47153 dfnelbr2 47383 edgusgrclnbfin 47952 |
| Copyright terms: Public domain | W3C validator |