| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > biantrur | Structured version Visualization version GIF version | ||
| Description: A wff is equivalent to its conjunction with truth. (Contributed by NM, 3-Aug-1994.) |
| Ref | Expression |
|---|---|
| biantrur.1 | ⊢ 𝜑 |
| Ref | Expression |
|---|---|
| biantrur | ⊢ (𝜓 ↔ (𝜑 ∧ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | biantrur.1 | . . 3 ⊢ 𝜑 | |
| 2 | 1 | biantru 529 | . 2 ⊢ (𝜓 ↔ (𝜓 ∧ 𝜑)) |
| 3 | 2 | biancomi 462 | 1 ⊢ (𝜓 ↔ (𝜑 ∧ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: mpbiran 709 cases 1042 truan 1551 2sb5rf 2470 euae 2653 rexv 3472 reuv 3473 rmov 3474 rabab 3475 euxfrw 3689 euxfr 3691 euind 3692 dfdif3OLD 4077 ddif 4100 nssinpss 4226 nsspssun 4227 notabw 4272 vss 4405 reuprg0 4662 reuprg 4663 difsnpss 4767 sspr 4795 sstp 4796 disjprg 5098 mptv 5208 reusv2lem5 5352 oteqex2 5454 dfid4 5527 intirr 6079 xpcan 6137 resssxp 6231 fvopab6 6984 fnressn 7112 riotav 7331 mpov 7481 sorpss 7684 opabn1stprc 8016 fparlem2 8069 fnsuppres 8147 brtpos0 8189 naddrid 8624 sup0riota 9393 genpass 10938 nnwos 12850 hashbclem 14393 ccatlcan 14659 clim0 15448 gcd0id 16465 isdomn3 20635 pjfval2 21651 mat1dimbas 22392 pmatcollpw2lem 22697 isbasis3g 22869 opnssneib 23035 ssidcn 23175 qtopcld 23633 mdegleb 26002 vieta1 26253 lgsne0 27279 axpasch 28921 0wlk 30095 0clwlk 30109 shlesb1i 31365 chnlei 31464 pjneli 31702 cvexchlem 32347 dmdbr5ati 32401 elimifd 32522 fzo0opth 32778 1arithidom 33501 lmxrge0 33935 cntnevol 34211 bnj110 34841 vonf1owev 35088 goeleq12bg 35329 fmlafvel 35365 elpotr 35762 dfbigcup2 35880 bj-rexvw 36861 bj-rababw 36862 bj-brab2a1 37130 finxpreclem4 37375 wl-cases2-dnf 37493 wl-euae 37498 wl-dfclab 37577 cnambfre 37655 triantru3 38211 lub0N 39175 glb0N 39179 cvlsupr3 39330 ifpdfor2 43443 ifpdfor 43447 ifpim1 43451 ifpid2 43453 ifpim2 43454 ifpid2g 43475 ifpid1g 43476 ifpim23g 43477 ifpim1g 43483 ifpimimb 43486 rp-isfinite6 43500 rababg 43556 relnonrel 43569 dffrege115 43960 funressnfv 47037 dfnelbr2 47267 edgusgrclnbfin 47835 |
| Copyright terms: Public domain | W3C validator |