Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > biantrur | Structured version Visualization version GIF version |
Description: A wff is equivalent to its conjunction with truth. (Contributed by NM, 3-Aug-1994.) |
Ref | Expression |
---|---|
biantrur.1 | ⊢ 𝜑 |
Ref | Expression |
---|---|
biantrur | ⊢ (𝜓 ↔ (𝜑 ∧ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | biantrur.1 | . . 3 ⊢ 𝜑 | |
2 | 1 | biantru 530 | . 2 ⊢ (𝜓 ↔ (𝜓 ∧ 𝜑)) |
3 | 2 | biancomi 463 | 1 ⊢ (𝜓 ↔ (𝜑 ∧ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 396 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 |
This theorem is referenced by: mpbiran 706 cases 1040 truan 1550 2sb5rf 2473 euae 2662 rexv 3458 reuv 3459 rmov 3460 rabab 3461 euxfrw 3657 euxfr 3659 euind 3660 dfdif3 4050 ddif 4072 nssinpss 4191 nsspssun 4192 notabw 4238 vss 4378 reuprg0 4639 reuprg 4640 difsnpss 4741 sspr 4767 sstp 4768 disjprgw 5070 disjprg 5071 mptv 5191 reusv2lem5 5326 oteqex2 5414 dfid4 5491 intirr 6028 xpcan 6084 resssxp 6177 fvopab6 6917 fnressn 7039 riotav 7246 mpov 7395 sorpss 7590 opabn1stprc 7907 fparlem2 7962 fnsuppres 8016 brtpos0 8058 sup0riota 9233 genpass 10774 nnwos 12664 hashbclem 14173 ccatlcan 14440 clim0 15224 gcd0id 16235 pjfval2 20925 mat1dimbas 21630 pmatcollpw2lem 21935 isbasis3g 22108 opnssneib 22275 ssidcn 22415 qtopcld 22873 mdegleb 25238 vieta1 25481 lgsne0 26492 axpasch 27318 0wlk 28489 0clwlk 28503 shlesb1i 29757 chnlei 29856 pjneli 30094 cvexchlem 30739 dmdbr5ati 30793 elimifd 30895 lmxrge0 31911 cntnevol 32205 bnj110 32847 goeleq12bg 33320 fmlafvel 33356 elpotr 33766 naddid1 33845 dfbigcup2 34210 bj-rexvw 35074 bj-rababw 35075 bj-brab2a1 35329 finxpreclem4 35574 wl-cases2-dnf 35680 wl-euae 35685 wl-dfclab 35756 cnambfre 35834 triantru3 36389 lub0N 37210 glb0N 37214 cvlsupr3 37365 isdomn3 41036 ifpdfor2 41075 ifpdfor 41079 ifpim1 41083 ifpid2 41085 ifpim2 41086 ifpid2g 41107 ifpid1g 41108 ifpim23g 41109 ifpim1g 41115 ifpimimb 41118 rp-isfinite6 41132 rababg 41188 relnonrel 41202 dffrege115 41593 funressnfv 44548 dfnelbr2 44776 |
Copyright terms: Public domain | W3C validator |