| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > biantrur | Structured version Visualization version GIF version | ||
| Description: A wff is equivalent to its conjunction with truth. (Contributed by NM, 3-Aug-1994.) |
| Ref | Expression |
|---|---|
| biantrur.1 | ⊢ 𝜑 |
| Ref | Expression |
|---|---|
| biantrur | ⊢ (𝜓 ↔ (𝜑 ∧ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | biantrur.1 | . . 3 ⊢ 𝜑 | |
| 2 | 1 | biantru 529 | . 2 ⊢ (𝜓 ↔ (𝜓 ∧ 𝜑)) |
| 3 | 2 | biancomi 462 | 1 ⊢ (𝜓 ↔ (𝜑 ∧ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: mpbiran 709 cases 1042 truan 1551 2sb5rf 2477 euae 2660 rexv 3493 reuv 3494 rmov 3495 rabab 3496 euxfrw 3709 euxfr 3711 euind 3712 dfdif3OLD 4098 ddif 4121 nssinpss 4247 nsspssun 4248 notabw 4293 vss 4426 reuprg0 4683 reuprg 4684 difsnpss 4788 sspr 4816 sstp 4817 disjprg 5120 mptv 5233 reusv2lem5 5377 oteqex2 5479 dfid4 5554 intirr 6112 xpcan 6170 resssxp 6264 fvopab6 7025 fnressn 7153 riotav 7372 mpov 7524 sorpss 7727 opabn1stprc 8062 fparlem2 8117 fnsuppres 8195 brtpos0 8237 naddrid 8700 sup0riota 9483 genpass 11028 nnwos 12936 hashbclem 14475 ccatlcan 14741 clim0 15527 gcd0id 16543 isdomn3 20680 pjfval2 21674 mat1dimbas 22415 pmatcollpw2lem 22720 isbasis3g 22892 opnssneib 23058 ssidcn 23198 qtopcld 23656 mdegleb 26026 vieta1 26277 lgsne0 27303 axpasch 28925 0wlk 30102 0clwlk 30116 shlesb1i 31372 chnlei 31471 pjneli 31709 cvexchlem 32354 dmdbr5ati 32408 elimifd 32529 fzo0opth 32787 1arithidom 33557 lmxrge0 33988 cntnevol 34264 bnj110 34894 goeleq12bg 35376 fmlafvel 35412 elpotr 35804 dfbigcup2 35922 bj-rexvw 36903 bj-rababw 36904 bj-brab2a1 37172 finxpreclem4 37417 wl-cases2-dnf 37535 wl-euae 37540 wl-dfclab 37619 cnambfre 37697 triantru3 38253 lub0N 39212 glb0N 39216 cvlsupr3 39367 ifpdfor2 43460 ifpdfor 43464 ifpim1 43468 ifpid2 43470 ifpim2 43471 ifpid2g 43492 ifpid1g 43493 ifpim23g 43494 ifpim1g 43500 ifpimimb 43503 rp-isfinite6 43517 rababg 43573 relnonrel 43586 dffrege115 43977 funressnfv 47052 dfnelbr2 47282 edgusgrclnbfin 47835 |
| Copyright terms: Public domain | W3C validator |