Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > biantrur | Structured version Visualization version GIF version |
Description: A wff is equivalent to its conjunction with truth. (Contributed by NM, 3-Aug-1994.) |
Ref | Expression |
---|---|
biantrur.1 | ⊢ 𝜑 |
Ref | Expression |
---|---|
biantrur | ⊢ (𝜓 ↔ (𝜑 ∧ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | biantrur.1 | . . 3 ⊢ 𝜑 | |
2 | 1 | biantru 529 | . 2 ⊢ (𝜓 ↔ (𝜓 ∧ 𝜑)) |
3 | 2 | biancomi 462 | 1 ⊢ (𝜓 ↔ (𝜑 ∧ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 |
This theorem is referenced by: mpbiran 705 cases 1039 truan 1550 2sb5rf 2472 euae 2661 rexv 3447 reuv 3448 rmov 3449 rabab 3450 euxfrw 3651 euxfr 3653 euind 3654 dfdif3 4045 ddif 4067 nssinpss 4187 nsspssun 4188 notabw 4234 vss 4374 reuprg0 4635 reuprg 4636 difsnpss 4737 sspr 4763 sstp 4764 disjprgw 5065 disjprg 5066 mptv 5186 reusv2lem5 5320 oteqex2 5407 dfid4 5481 intirr 6012 xpcan 6068 resssxp 6162 fvopab6 6890 fnressn 7012 riotav 7217 mpov 7364 sorpss 7559 opabn1stprc 7871 fparlem2 7924 fnsuppres 7978 brtpos0 8020 sup0riota 9154 genpass 10696 nnwos 12584 hashbclem 14092 ccatlcan 14359 clim0 15143 gcd0id 16154 pjfval2 20826 mat1dimbas 21529 pmatcollpw2lem 21834 isbasis3g 22007 opnssneib 22174 ssidcn 22314 qtopcld 22772 mdegleb 25134 vieta1 25377 lgsne0 26388 axpasch 27212 0wlk 28381 0clwlk 28395 shlesb1i 29649 chnlei 29748 pjneli 29986 cvexchlem 30631 dmdbr5ati 30685 elimifd 30787 lmxrge0 31804 cntnevol 32096 bnj110 32738 goeleq12bg 33211 fmlafvel 33247 elpotr 33663 naddid1 33763 dfbigcup2 34128 bj-rexvw 34992 bj-rababw 34993 bj-brab2a1 35247 finxpreclem4 35492 wl-cases2-dnf 35598 wl-euae 35603 wl-dfclab 35674 cnambfre 35752 triantru3 36307 lub0N 37130 glb0N 37134 cvlsupr3 37285 isdomn3 40945 ifpdfor2 40966 ifpdfor 40970 ifpim1 40974 ifpid2 40976 ifpim2 40977 ifpid2g 40998 ifpid1g 40999 ifpim23g 41000 ifpim1g 41006 ifpimimb 41009 rp-isfinite6 41023 rababg 41070 relnonrel 41084 dffrege115 41475 funressnfv 44424 dfnelbr2 44652 |
Copyright terms: Public domain | W3C validator |