| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > biantrur | Structured version Visualization version GIF version | ||
| Description: A wff is equivalent to its conjunction with truth. (Contributed by NM, 3-Aug-1994.) |
| Ref | Expression |
|---|---|
| biantrur.1 | ⊢ 𝜑 |
| Ref | Expression |
|---|---|
| biantrur | ⊢ (𝜓 ↔ (𝜑 ∧ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | biantrur.1 | . . 3 ⊢ 𝜑 | |
| 2 | 1 | biantru 529 | . 2 ⊢ (𝜓 ↔ (𝜓 ∧ 𝜑)) |
| 3 | 2 | biancomi 462 | 1 ⊢ (𝜓 ↔ (𝜑 ∧ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: mpbiran 709 cases 1042 truan 1551 2sb5rf 2470 euae 2653 rexv 3472 reuv 3473 rmov 3474 rabab 3475 euxfrw 3689 euxfr 3691 euind 3692 dfdif3OLD 4077 ddif 4100 nssinpss 4226 nsspssun 4227 notabw 4272 vss 4405 reuprg0 4662 reuprg 4663 difsnpss 4767 sspr 4795 sstp 4796 disjprg 5098 mptv 5208 reusv2lem5 5352 oteqex2 5454 dfid4 5527 intirr 6079 xpcan 6137 resssxp 6231 fvopab6 6984 fnressn 7112 riotav 7331 mpov 7481 sorpss 7684 opabn1stprc 8016 fparlem2 8069 fnsuppres 8147 brtpos0 8189 naddrid 8624 sup0riota 9393 genpass 10938 nnwos 12850 hashbclem 14393 ccatlcan 14659 clim0 15448 gcd0id 16465 isdomn3 20600 pjfval2 21594 mat1dimbas 22335 pmatcollpw2lem 22640 isbasis3g 22812 opnssneib 22978 ssidcn 23118 qtopcld 23576 mdegleb 25945 vieta1 26196 lgsne0 27222 axpasch 28844 0wlk 30018 0clwlk 30032 shlesb1i 31288 chnlei 31387 pjneli 31625 cvexchlem 32270 dmdbr5ati 32324 elimifd 32445 fzo0opth 32701 1arithidom 33481 lmxrge0 33915 cntnevol 34191 bnj110 34821 vonf1owev 35068 goeleq12bg 35309 fmlafvel 35345 elpotr 35742 dfbigcup2 35860 bj-rexvw 36841 bj-rababw 36842 bj-brab2a1 37110 finxpreclem4 37355 wl-cases2-dnf 37473 wl-euae 37478 wl-dfclab 37557 cnambfre 37635 triantru3 38191 lub0N 39155 glb0N 39159 cvlsupr3 39310 ifpdfor2 43423 ifpdfor 43427 ifpim1 43431 ifpid2 43433 ifpim2 43434 ifpid2g 43455 ifpid1g 43456 ifpim23g 43457 ifpim1g 43463 ifpimimb 43466 rp-isfinite6 43480 rababg 43536 relnonrel 43549 dffrege115 43940 funressnfv 47017 dfnelbr2 47247 edgusgrclnbfin 47815 |
| Copyright terms: Public domain | W3C validator |