| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > biantrur | Structured version Visualization version GIF version | ||
| Description: A wff is equivalent to its conjunction with truth. (Contributed by NM, 3-Aug-1994.) |
| Ref | Expression |
|---|---|
| biantrur.1 | ⊢ 𝜑 |
| Ref | Expression |
|---|---|
| biantrur | ⊢ (𝜓 ↔ (𝜑 ∧ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | biantrur.1 | . . 3 ⊢ 𝜑 | |
| 2 | 1 | biantru 529 | . 2 ⊢ (𝜓 ↔ (𝜓 ∧ 𝜑)) |
| 3 | 2 | biancomi 462 | 1 ⊢ (𝜓 ↔ (𝜑 ∧ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: mpbiran 709 cases 1042 truan 1551 2sb5rf 2470 euae 2653 rexv 3464 reuv 3465 rmov 3466 rabab 3467 euxfrw 3681 euxfr 3683 euind 3684 dfdif3OLD 4069 ddif 4092 nssinpss 4218 nsspssun 4219 notabw 4264 vss 4397 reuprg0 4654 reuprg 4655 difsnpss 4758 sspr 4786 sstp 4787 disjprg 5088 mptv 5198 reusv2lem5 5341 oteqex2 5442 dfid4 5515 intirr 6067 xpcan 6125 resssxp 6218 fvopab6 6964 fnressn 7092 riotav 7311 mpov 7461 sorpss 7664 opabn1stprc 7993 fparlem2 8046 fnsuppres 8124 brtpos0 8166 naddrid 8601 sup0riota 9356 genpass 10903 nnwos 12816 hashbclem 14359 ccatlcan 14624 clim0 15413 gcd0id 16430 isdomn3 20600 pjfval2 21616 mat1dimbas 22357 pmatcollpw2lem 22662 isbasis3g 22834 opnssneib 23000 ssidcn 23140 qtopcld 23598 mdegleb 25967 vieta1 26218 lgsne0 27244 axpasch 28886 0wlk 30060 0clwlk 30074 shlesb1i 31330 chnlei 31429 pjneli 31667 cvexchlem 32312 dmdbr5ati 32366 elimifd 32487 fzo0opth 32748 1arithidom 33474 lmxrge0 33919 cntnevol 34195 bnj110 34825 vonf1owev 35085 goeleq12bg 35326 fmlafvel 35362 elpotr 35759 dfbigcup2 35877 bj-rexvw 36858 bj-rababw 36859 bj-brab2a1 37127 finxpreclem4 37372 wl-cases2-dnf 37490 wl-euae 37495 wl-dfclab 37574 cnambfre 37652 triantru3 38208 lub0N 39172 glb0N 39176 cvlsupr3 39327 ifpdfor2 43438 ifpdfor 43442 ifpim1 43446 ifpid2 43448 ifpim2 43449 ifpid2g 43470 ifpid1g 43471 ifpim23g 43472 ifpim1g 43478 ifpimimb 43481 rp-isfinite6 43495 rababg 43551 relnonrel 43564 dffrege115 43955 funressnfv 47031 dfnelbr2 47261 edgusgrclnbfin 47830 |
| Copyright terms: Public domain | W3C validator |