| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > biantrur | Structured version Visualization version GIF version | ||
| Description: A wff is equivalent to its conjunction with truth. (Contributed by NM, 3-Aug-1994.) |
| Ref | Expression |
|---|---|
| biantrur.1 | ⊢ 𝜑 |
| Ref | Expression |
|---|---|
| biantrur | ⊢ (𝜓 ↔ (𝜑 ∧ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | biantrur.1 | . . 3 ⊢ 𝜑 | |
| 2 | 1 | biantru 529 | . 2 ⊢ (𝜓 ↔ (𝜓 ∧ 𝜑)) |
| 3 | 2 | biancomi 462 | 1 ⊢ (𝜓 ↔ (𝜑 ∧ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: mpbiran 709 cases 1042 truan 1551 2sb5rf 2470 euae 2653 rexv 3475 reuv 3476 rmov 3477 rabab 3478 euxfrw 3692 euxfr 3694 euind 3695 dfdif3OLD 4081 ddif 4104 nssinpss 4230 nsspssun 4231 notabw 4276 vss 4409 reuprg0 4666 reuprg 4667 difsnpss 4771 sspr 4799 sstp 4800 disjprg 5103 mptv 5213 reusv2lem5 5357 oteqex2 5459 dfid4 5534 intirr 6091 xpcan 6149 resssxp 6243 fvopab6 7002 fnressn 7130 riotav 7349 mpov 7501 sorpss 7704 opabn1stprc 8037 fparlem2 8092 fnsuppres 8170 brtpos0 8212 naddrid 8647 sup0riota 9417 genpass 10962 nnwos 12874 hashbclem 14417 ccatlcan 14683 clim0 15472 gcd0id 16489 isdomn3 20624 pjfval2 21618 mat1dimbas 22359 pmatcollpw2lem 22664 isbasis3g 22836 opnssneib 23002 ssidcn 23142 qtopcld 23600 mdegleb 25969 vieta1 26220 lgsne0 27246 axpasch 28868 0wlk 30045 0clwlk 30059 shlesb1i 31315 chnlei 31414 pjneli 31652 cvexchlem 32297 dmdbr5ati 32351 elimifd 32472 fzo0opth 32728 1arithidom 33508 lmxrge0 33942 cntnevol 34218 bnj110 34848 vonf1owev 35095 goeleq12bg 35336 fmlafvel 35372 elpotr 35769 dfbigcup2 35887 bj-rexvw 36868 bj-rababw 36869 bj-brab2a1 37137 finxpreclem4 37382 wl-cases2-dnf 37500 wl-euae 37505 wl-dfclab 37584 cnambfre 37662 triantru3 38218 lub0N 39182 glb0N 39186 cvlsupr3 39337 ifpdfor2 43450 ifpdfor 43454 ifpim1 43458 ifpid2 43460 ifpim2 43461 ifpid2g 43482 ifpid1g 43483 ifpim23g 43484 ifpim1g 43490 ifpimimb 43493 rp-isfinite6 43507 rababg 43563 relnonrel 43576 dffrege115 43967 funressnfv 47044 dfnelbr2 47274 edgusgrclnbfin 47842 |
| Copyright terms: Public domain | W3C validator |