![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > biantrur | Structured version Visualization version GIF version |
Description: A wff is equivalent to its conjunction with truth. (Contributed by NM, 3-Aug-1994.) |
Ref | Expression |
---|---|
biantrur.1 | ⊢ 𝜑 |
Ref | Expression |
---|---|
biantrur | ⊢ (𝜓 ↔ (𝜑 ∧ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | biantrur.1 | . . 3 ⊢ 𝜑 | |
2 | 1 | biantru 529 | . 2 ⊢ (𝜓 ↔ (𝜓 ∧ 𝜑)) |
3 | 2 | biancomi 462 | 1 ⊢ (𝜓 ↔ (𝜑 ∧ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 |
This theorem is referenced by: mpbiran 709 cases 1042 truan 1548 2sb5rf 2475 euae 2658 rexv 3507 reuv 3508 rmov 3509 rabab 3510 euxfrw 3730 euxfr 3732 euind 3733 dfdif3OLD 4128 ddif 4151 nssinpss 4273 nsspssun 4274 notabw 4319 vss 4452 reuprg0 4707 reuprg 4708 difsnpss 4812 sspr 4840 sstp 4841 disjprg 5144 mptv 5264 reusv2lem5 5408 oteqex2 5509 dfid4 5584 intirr 6141 xpcan 6198 resssxp 6292 fvopab6 7050 fnressn 7178 riotav 7393 mpov 7545 sorpss 7747 opabn1stprc 8082 fparlem2 8137 fnsuppres 8215 brtpos0 8257 naddrid 8720 sup0riota 9503 genpass 11047 nnwos 12955 hashbclem 14488 ccatlcan 14753 clim0 15539 gcd0id 16553 isdomn3 20732 pjfval2 21747 mat1dimbas 22494 pmatcollpw2lem 22799 isbasis3g 22972 opnssneib 23139 ssidcn 23279 qtopcld 23737 mdegleb 26118 vieta1 26369 lgsne0 27394 axpasch 28971 0wlk 30145 0clwlk 30159 shlesb1i 31415 chnlei 31514 pjneli 31752 cvexchlem 32397 dmdbr5ati 32451 elimifd 32564 fzo0opth 32813 1arithidom 33545 lmxrge0 33913 cntnevol 34209 bnj110 34851 goeleq12bg 35334 fmlafvel 35370 elpotr 35763 dfbigcup2 35881 bj-rexvw 36863 bj-rababw 36864 bj-brab2a1 37132 finxpreclem4 37377 wl-cases2-dnf 37493 wl-euae 37498 wl-dfclab 37577 cnambfre 37655 triantru3 38211 lub0N 39171 glb0N 39175 cvlsupr3 39326 ifpdfor2 43451 ifpdfor 43455 ifpim1 43459 ifpid2 43461 ifpim2 43462 ifpid2g 43483 ifpid1g 43484 ifpim23g 43485 ifpim1g 43491 ifpimimb 43494 rp-isfinite6 43508 rababg 43564 relnonrel 43577 dffrege115 43968 funressnfv 46993 dfnelbr2 47223 edgusgrclnbfin 47766 |
Copyright terms: Public domain | W3C validator |