Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eqvrelcoss3 Structured version   Visualization version   GIF version

Theorem eqvrelcoss3 37109
Description: Two ways to express equivalent cosets. (Contributed by Peter Mazsa, 28-Apr-2019.)
Assertion
Ref Expression
eqvrelcoss3 ( EqvRel ≀ 𝑅 ↔ ∀𝑥𝑦𝑧((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧))
Distinct variable group:   𝑥,𝑅,𝑦,𝑧

Proof of Theorem eqvrelcoss3
StepHypRef Expression
1 relcoss 36914 . . 3 Rel ≀ 𝑅
21biantru 531 . 2 ((∀𝑥 ∈ dom ≀ 𝑅𝑥𝑅𝑥 ∧ ∀𝑥𝑦(𝑥𝑅𝑦𝑦𝑅𝑥) ∧ ∀𝑥𝑦𝑧((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)) ↔ ((∀𝑥 ∈ dom ≀ 𝑅𝑥𝑅𝑥 ∧ ∀𝑥𝑦(𝑥𝑅𝑦𝑦𝑅𝑥) ∧ ∀𝑥𝑦𝑧((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)) ∧ Rel ≀ 𝑅))
3 refrelcosslem 36953 . . 3 𝑥 ∈ dom ≀ 𝑅𝑥𝑅𝑥
4 symrelcoss3 36956 . . . 4 (∀𝑥𝑦(𝑥𝑅𝑦𝑦𝑅𝑥) ∧ Rel ≀ 𝑅)
54simpli 485 . . 3 𝑥𝑦(𝑥𝑅𝑦𝑦𝑅𝑥)
63, 5triantru3 36714 . 2 (∀𝑥𝑦𝑧((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧) ↔ (∀𝑥 ∈ dom ≀ 𝑅𝑥𝑅𝑥 ∧ ∀𝑥𝑦(𝑥𝑅𝑦𝑦𝑅𝑥) ∧ ∀𝑥𝑦𝑧((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)))
7 dfeqvrel3 37082 . 2 ( EqvRel ≀ 𝑅 ↔ ((∀𝑥 ∈ dom ≀ 𝑅𝑥𝑅𝑥 ∧ ∀𝑥𝑦(𝑥𝑅𝑦𝑦𝑅𝑥) ∧ ∀𝑥𝑦𝑧((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)) ∧ Rel ≀ 𝑅))
82, 6, 73bitr4ri 304 1 ( EqvRel ≀ 𝑅 ↔ ∀𝑥𝑦𝑧((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397  w3a 1088  wal 1540  wral 3065   class class class wbr 5110  dom cdm 5638  Rel wrel 5643  ccoss 36663   EqvRel weqvrel 36680
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2708  ax-sep 5261  ax-nul 5268  ax-pr 5389
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-clab 2715  df-cleq 2729  df-clel 2815  df-ral 3066  df-rex 3075  df-rab 3411  df-v 3450  df-dif 3918  df-un 3920  df-in 3922  df-ss 3932  df-nul 4288  df-if 4492  df-sn 4592  df-pr 4594  df-op 4598  df-br 5111  df-opab 5173  df-id 5536  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-coss 36902  df-refrel 37003  df-symrel 37035  df-trrel 37065  df-eqvrel 37076
This theorem is referenced by:  eqvrelcoss2  37110  eqvrelcoss4  37111  disjim  37272
  Copyright terms: Public domain W3C validator