![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > eqvrelcoss3 | Structured version Visualization version GIF version |
Description: Two ways to express equivalent cosets. (Contributed by Peter Mazsa, 28-Apr-2019.) |
Ref | Expression |
---|---|
eqvrelcoss3 | ⊢ ( EqvRel ≀ 𝑅 ↔ ∀𝑥∀𝑦∀𝑧((𝑥 ≀ 𝑅𝑦 ∧ 𝑦 ≀ 𝑅𝑧) → 𝑥 ≀ 𝑅𝑧)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relcoss 38405 | . . 3 ⊢ Rel ≀ 𝑅 | |
2 | 1 | biantru 529 | . 2 ⊢ ((∀𝑥 ∈ dom ≀ 𝑅𝑥 ≀ 𝑅𝑥 ∧ ∀𝑥∀𝑦(𝑥 ≀ 𝑅𝑦 → 𝑦 ≀ 𝑅𝑥) ∧ ∀𝑥∀𝑦∀𝑧((𝑥 ≀ 𝑅𝑦 ∧ 𝑦 ≀ 𝑅𝑧) → 𝑥 ≀ 𝑅𝑧)) ↔ ((∀𝑥 ∈ dom ≀ 𝑅𝑥 ≀ 𝑅𝑥 ∧ ∀𝑥∀𝑦(𝑥 ≀ 𝑅𝑦 → 𝑦 ≀ 𝑅𝑥) ∧ ∀𝑥∀𝑦∀𝑧((𝑥 ≀ 𝑅𝑦 ∧ 𝑦 ≀ 𝑅𝑧) → 𝑥 ≀ 𝑅𝑧)) ∧ Rel ≀ 𝑅)) |
3 | refrelcosslem 38444 | . . 3 ⊢ ∀𝑥 ∈ dom ≀ 𝑅𝑥 ≀ 𝑅𝑥 | |
4 | symrelcoss3 38447 | . . . 4 ⊢ (∀𝑥∀𝑦(𝑥 ≀ 𝑅𝑦 → 𝑦 ≀ 𝑅𝑥) ∧ Rel ≀ 𝑅) | |
5 | 4 | simpli 483 | . . 3 ⊢ ∀𝑥∀𝑦(𝑥 ≀ 𝑅𝑦 → 𝑦 ≀ 𝑅𝑥) |
6 | 3, 5 | triantru3 38211 | . 2 ⊢ (∀𝑥∀𝑦∀𝑧((𝑥 ≀ 𝑅𝑦 ∧ 𝑦 ≀ 𝑅𝑧) → 𝑥 ≀ 𝑅𝑧) ↔ (∀𝑥 ∈ dom ≀ 𝑅𝑥 ≀ 𝑅𝑥 ∧ ∀𝑥∀𝑦(𝑥 ≀ 𝑅𝑦 → 𝑦 ≀ 𝑅𝑥) ∧ ∀𝑥∀𝑦∀𝑧((𝑥 ≀ 𝑅𝑦 ∧ 𝑦 ≀ 𝑅𝑧) → 𝑥 ≀ 𝑅𝑧))) |
7 | dfeqvrel3 38573 | . 2 ⊢ ( EqvRel ≀ 𝑅 ↔ ((∀𝑥 ∈ dom ≀ 𝑅𝑥 ≀ 𝑅𝑥 ∧ ∀𝑥∀𝑦(𝑥 ≀ 𝑅𝑦 → 𝑦 ≀ 𝑅𝑥) ∧ ∀𝑥∀𝑦∀𝑧((𝑥 ≀ 𝑅𝑦 ∧ 𝑦 ≀ 𝑅𝑧) → 𝑥 ≀ 𝑅𝑧)) ∧ Rel ≀ 𝑅)) | |
8 | 2, 6, 7 | 3bitr4ri 304 | 1 ⊢ ( EqvRel ≀ 𝑅 ↔ ∀𝑥∀𝑦∀𝑧((𝑥 ≀ 𝑅𝑦 ∧ 𝑦 ≀ 𝑅𝑧) → 𝑥 ≀ 𝑅𝑧)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 ∀wal 1535 ∀wral 3059 class class class wbr 5148 dom cdm 5689 Rel wrel 5694 ≀ ccoss 38162 EqvRel weqvrel 38179 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-br 5149 df-opab 5211 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-coss 38393 df-refrel 38494 df-symrel 38526 df-trrel 38556 df-eqvrel 38567 |
This theorem is referenced by: eqvrelcoss2 38601 eqvrelcoss4 38602 disjim 38763 |
Copyright terms: Public domain | W3C validator |