Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eqvrelcoss3 Structured version   Visualization version   GIF version

Theorem eqvrelcoss3 36658
Description: Two ways to express equivalent cosets. (Contributed by Peter Mazsa, 28-Apr-2019.)
Assertion
Ref Expression
eqvrelcoss3 ( EqvRel ≀ 𝑅 ↔ ∀𝑥𝑦𝑧((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧))
Distinct variable group:   𝑥,𝑅,𝑦,𝑧

Proof of Theorem eqvrelcoss3
StepHypRef Expression
1 relcoss 36473 . . 3 Rel ≀ 𝑅
21biantru 529 . 2 ((∀𝑥 ∈ dom ≀ 𝑅𝑥𝑅𝑥 ∧ ∀𝑥𝑦(𝑥𝑅𝑦𝑦𝑅𝑥) ∧ ∀𝑥𝑦𝑧((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)) ↔ ((∀𝑥 ∈ dom ≀ 𝑅𝑥𝑅𝑥 ∧ ∀𝑥𝑦(𝑥𝑅𝑦𝑦𝑅𝑥) ∧ ∀𝑥𝑦𝑧((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)) ∧ Rel ≀ 𝑅))
3 refrelcosslem 36507 . . 3 𝑥 ∈ dom ≀ 𝑅𝑥𝑅𝑥
4 symrelcoss3 36510 . . . 4 (∀𝑥𝑦(𝑥𝑅𝑦𝑦𝑅𝑥) ∧ Rel ≀ 𝑅)
54simpli 483 . . 3 𝑥𝑦(𝑥𝑅𝑦𝑦𝑅𝑥)
63, 5triantru3 36307 . 2 (∀𝑥𝑦𝑧((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧) ↔ (∀𝑥 ∈ dom ≀ 𝑅𝑥𝑅𝑥 ∧ ∀𝑥𝑦(𝑥𝑅𝑦𝑦𝑅𝑥) ∧ ∀𝑥𝑦𝑧((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)))
7 dfeqvrel3 36631 . 2 ( EqvRel ≀ 𝑅 ↔ ((∀𝑥 ∈ dom ≀ 𝑅𝑥𝑅𝑥 ∧ ∀𝑥𝑦(𝑥𝑅𝑦𝑦𝑅𝑥) ∧ ∀𝑥𝑦𝑧((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)) ∧ Rel ≀ 𝑅))
82, 6, 73bitr4ri 303 1 ( EqvRel ≀ 𝑅 ↔ ∀𝑥𝑦𝑧((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085  wal 1537  wral 3063   class class class wbr 5070  dom cdm 5580  Rel wrel 5585  ccoss 36260   EqvRel weqvrel 36277
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-br 5071  df-opab 5133  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-coss 36464  df-refrel 36557  df-symrel 36585  df-trrel 36615  df-eqvrel 36625
This theorem is referenced by:  eqvrelcoss2  36659  eqvrelcoss4  36660
  Copyright terms: Public domain W3C validator