Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eqvrelcoss3 Structured version   Visualization version   GIF version

Theorem eqvrelcoss3 38724
Description: Two ways to express equivalent cosets. (Contributed by Peter Mazsa, 28-Apr-2019.)
Assertion
Ref Expression
eqvrelcoss3 ( EqvRel ≀ 𝑅 ↔ ∀𝑥𝑦𝑧((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧))
Distinct variable group:   𝑥,𝑅,𝑦,𝑧

Proof of Theorem eqvrelcoss3
StepHypRef Expression
1 relcoss 38535 . . 3 Rel ≀ 𝑅
21biantru 529 . 2 ((∀𝑥 ∈ dom ≀ 𝑅𝑥𝑅𝑥 ∧ ∀𝑥𝑦(𝑥𝑅𝑦𝑦𝑅𝑥) ∧ ∀𝑥𝑦𝑧((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)) ↔ ((∀𝑥 ∈ dom ≀ 𝑅𝑥𝑅𝑥 ∧ ∀𝑥𝑦(𝑥𝑅𝑦𝑦𝑅𝑥) ∧ ∀𝑥𝑦𝑧((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)) ∧ Rel ≀ 𝑅))
3 refrelcosslem 38574 . . 3 𝑥 ∈ dom ≀ 𝑅𝑥𝑅𝑥
4 symrelcoss3 38577 . . . 4 (∀𝑥𝑦(𝑥𝑅𝑦𝑦𝑅𝑥) ∧ Rel ≀ 𝑅)
54simpli 483 . . 3 𝑥𝑦(𝑥𝑅𝑦𝑦𝑅𝑥)
63, 5triantru3 38281 . 2 (∀𝑥𝑦𝑧((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧) ↔ (∀𝑥 ∈ dom ≀ 𝑅𝑥𝑅𝑥 ∧ ∀𝑥𝑦(𝑥𝑅𝑦𝑦𝑅𝑥) ∧ ∀𝑥𝑦𝑧((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)))
7 dfeqvrel3 38697 . 2 ( EqvRel ≀ 𝑅 ↔ ((∀𝑥 ∈ dom ≀ 𝑅𝑥𝑅𝑥 ∧ ∀𝑥𝑦(𝑥𝑅𝑦𝑦𝑅𝑥) ∧ ∀𝑥𝑦𝑧((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)) ∧ Rel ≀ 𝑅))
82, 6, 73bitr4ri 304 1 ( EqvRel ≀ 𝑅 ↔ ∀𝑥𝑦𝑧((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086  wal 1539  wral 3047   class class class wbr 5089  dom cdm 5614  Rel wrel 5619  ccoss 38232   EqvRel weqvrel 38249
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-11 2160  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-br 5090  df-opab 5152  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-coss 38523  df-refrel 38614  df-symrel 38646  df-trrel 38680  df-eqvrel 38691
This theorem is referenced by:  eqvrelcoss2  38725  eqvrelcoss4  38726  disjim  38889
  Copyright terms: Public domain W3C validator