Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eqvrelcoss3 Structured version   Visualization version   GIF version

Theorem eqvrelcoss3 37483
Description: Two ways to express equivalent cosets. (Contributed by Peter Mazsa, 28-Apr-2019.)
Assertion
Ref Expression
eqvrelcoss3 ( EqvRel ≀ 𝑅 ↔ ∀𝑥𝑦𝑧((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧))
Distinct variable group:   𝑥,𝑅,𝑦,𝑧

Proof of Theorem eqvrelcoss3
StepHypRef Expression
1 relcoss 37288 . . 3 Rel ≀ 𝑅
21biantru 530 . 2 ((∀𝑥 ∈ dom ≀ 𝑅𝑥𝑅𝑥 ∧ ∀𝑥𝑦(𝑥𝑅𝑦𝑦𝑅𝑥) ∧ ∀𝑥𝑦𝑧((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)) ↔ ((∀𝑥 ∈ dom ≀ 𝑅𝑥𝑅𝑥 ∧ ∀𝑥𝑦(𝑥𝑅𝑦𝑦𝑅𝑥) ∧ ∀𝑥𝑦𝑧((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)) ∧ Rel ≀ 𝑅))
3 refrelcosslem 37327 . . 3 𝑥 ∈ dom ≀ 𝑅𝑥𝑅𝑥
4 symrelcoss3 37330 . . . 4 (∀𝑥𝑦(𝑥𝑅𝑦𝑦𝑅𝑥) ∧ Rel ≀ 𝑅)
54simpli 484 . . 3 𝑥𝑦(𝑥𝑅𝑦𝑦𝑅𝑥)
63, 5triantru3 37089 . 2 (∀𝑥𝑦𝑧((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧) ↔ (∀𝑥 ∈ dom ≀ 𝑅𝑥𝑅𝑥 ∧ ∀𝑥𝑦(𝑥𝑅𝑦𝑦𝑅𝑥) ∧ ∀𝑥𝑦𝑧((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)))
7 dfeqvrel3 37456 . 2 ( EqvRel ≀ 𝑅 ↔ ((∀𝑥 ∈ dom ≀ 𝑅𝑥𝑅𝑥 ∧ ∀𝑥𝑦(𝑥𝑅𝑦𝑦𝑅𝑥) ∧ ∀𝑥𝑦𝑧((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)) ∧ Rel ≀ 𝑅))
82, 6, 73bitr4ri 303 1 ( EqvRel ≀ 𝑅 ↔ ∀𝑥𝑦𝑧((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1087  wal 1539  wral 3061   class class class wbr 5148  dom cdm 5676  Rel wrel 5681  ccoss 37038   EqvRel weqvrel 37055
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-br 5149  df-opab 5211  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-coss 37276  df-refrel 37377  df-symrel 37409  df-trrel 37439  df-eqvrel 37450
This theorem is referenced by:  eqvrelcoss2  37484  eqvrelcoss4  37485  disjim  37646
  Copyright terms: Public domain W3C validator