Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > anan | Structured version Visualization version GIF version |
Description: Multiple commutations in conjunction. (Contributed by Peter Mazsa, 7-Mar-2020.) |
Ref | Expression |
---|---|
anan | ⊢ ((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ ((𝜑 ∧ 𝜃) ∧ 𝜏)) ↔ ((𝜓 ∧ 𝜃) ∧ (𝜑 ∧ (𝜒 ∧ 𝜏)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | an4 653 | . 2 ⊢ ((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ ((𝜑 ∧ 𝜃) ∧ 𝜏)) ↔ (((𝜑 ∧ 𝜓) ∧ (𝜑 ∧ 𝜃)) ∧ (𝜒 ∧ 𝜏))) | |
2 | anandi 673 | . . . 4 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜃)) ↔ ((𝜑 ∧ 𝜓) ∧ (𝜑 ∧ 𝜃))) | |
3 | ancom 461 | . . . 4 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜃)) ↔ ((𝜓 ∧ 𝜃) ∧ 𝜑)) | |
4 | 2, 3 | bitr3i 276 | . . 3 ⊢ (((𝜑 ∧ 𝜓) ∧ (𝜑 ∧ 𝜃)) ↔ ((𝜓 ∧ 𝜃) ∧ 𝜑)) |
5 | 4 | anbi1i 624 | . 2 ⊢ ((((𝜑 ∧ 𝜓) ∧ (𝜑 ∧ 𝜃)) ∧ (𝜒 ∧ 𝜏)) ↔ (((𝜓 ∧ 𝜃) ∧ 𝜑) ∧ (𝜒 ∧ 𝜏))) |
6 | anass 469 | . 2 ⊢ ((((𝜓 ∧ 𝜃) ∧ 𝜑) ∧ (𝜒 ∧ 𝜏)) ↔ ((𝜓 ∧ 𝜃) ∧ (𝜑 ∧ (𝜒 ∧ 𝜏)))) | |
7 | 1, 5, 6 | 3bitri 297 | 1 ⊢ ((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ ((𝜑 ∧ 𝜃) ∧ 𝜏)) ↔ ((𝜓 ∧ 𝜃) ∧ (𝜑 ∧ (𝜒 ∧ 𝜏)))) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 396 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 |
This theorem is referenced by: inxpxrn 36521 |
Copyright terms: Public domain | W3C validator |