| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > eqvrelcoss | Structured version Visualization version GIF version | ||
| Description: Two ways to express equivalent cosets. (Contributed by Peter Mazsa, 4-Jul-2020.) (Revised by Peter Mazsa, 20-Dec-2021.) |
| Ref | Expression |
|---|---|
| eqvrelcoss | ⊢ ( EqvRel ≀ 𝑅 ↔ TrRel ≀ 𝑅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-eqvrel 38608 | . 2 ⊢ ( EqvRel ≀ 𝑅 ↔ ( RefRel ≀ 𝑅 ∧ SymRel ≀ 𝑅 ∧ TrRel ≀ 𝑅)) | |
| 2 | refrelcoss 38546 | . . 3 ⊢ RefRel ≀ 𝑅 | |
| 3 | symrelcoss 38583 | . . 3 ⊢ SymRel ≀ 𝑅 | |
| 4 | 2, 3 | triantru3 38253 | . 2 ⊢ ( TrRel ≀ 𝑅 ↔ ( RefRel ≀ 𝑅 ∧ SymRel ≀ 𝑅 ∧ TrRel ≀ 𝑅)) |
| 5 | 1, 4 | bitr4i 278 | 1 ⊢ ( EqvRel ≀ 𝑅 ↔ TrRel ≀ 𝑅) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ w3a 1086 ≀ ccoss 38204 RefRel wrefrel 38210 SymRel wsymrel 38216 TrRel wtrrel 38219 EqvRel weqvrel 38221 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-br 5125 df-opab 5187 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-coss 38434 df-refrel 38535 df-symrel 38567 df-eqvrel 38608 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |