Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > eqvrelcoss | Structured version Visualization version GIF version |
Description: Two ways to express equivalent cosets. (Contributed by Peter Mazsa, 4-Jul-2020.) (Revised by Peter Mazsa, 20-Dec-2021.) |
Ref | Expression |
---|---|
eqvrelcoss | ⊢ ( EqvRel ≀ 𝑅 ↔ TrRel ≀ 𝑅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-eqvrel 36260 | . 2 ⊢ ( EqvRel ≀ 𝑅 ↔ ( RefRel ≀ 𝑅 ∧ SymRel ≀ 𝑅 ∧ TrRel ≀ 𝑅)) | |
2 | refrelcoss 36202 | . . 3 ⊢ RefRel ≀ 𝑅 | |
3 | symrelcoss 36236 | . . 3 ⊢ SymRel ≀ 𝑅 | |
4 | 2, 3 | triantru3 35940 | . 2 ⊢ ( TrRel ≀ 𝑅 ↔ ( RefRel ≀ 𝑅 ∧ SymRel ≀ 𝑅 ∧ TrRel ≀ 𝑅)) |
5 | 1, 4 | bitr4i 281 | 1 ⊢ ( EqvRel ≀ 𝑅 ↔ TrRel ≀ 𝑅) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 209 ∧ w3a 1084 ≀ ccoss 35893 RefRel wrefrel 35899 SymRel wsymrel 35905 TrRel wtrrel 35908 EqvRel weqvrel 35910 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5169 ax-nul 5176 ax-pr 5298 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-clab 2736 df-cleq 2750 df-clel 2830 df-ral 3075 df-rex 3076 df-rab 3079 df-v 3411 df-dif 3861 df-un 3863 df-in 3865 df-ss 3875 df-nul 4226 df-if 4421 df-sn 4523 df-pr 4525 df-op 4529 df-br 5033 df-opab 5095 df-id 5430 df-xp 5530 df-rel 5531 df-cnv 5532 df-co 5533 df-dm 5534 df-rn 5535 df-res 5536 df-coss 36099 df-refrel 36192 df-symrel 36220 df-eqvrel 36260 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |