Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eqvrelcoss Structured version   Visualization version   GIF version

Theorem eqvrelcoss 38573
Description: Two ways to express equivalent cosets. (Contributed by Peter Mazsa, 4-Jul-2020.) (Revised by Peter Mazsa, 20-Dec-2021.)
Assertion
Ref Expression
eqvrelcoss ( EqvRel ≀ 𝑅 ↔ TrRel ≀ 𝑅)

Proof of Theorem eqvrelcoss
StepHypRef Expression
1 df-eqvrel 38541 . 2 ( EqvRel ≀ 𝑅 ↔ ( RefRel ≀ 𝑅 ∧ SymRel ≀ 𝑅 ∧ TrRel ≀ 𝑅))
2 refrelcoss 38479 . . 3 RefRel ≀ 𝑅
3 symrelcoss 38516 . . 3 SymRel ≀ 𝑅
42, 3triantru3 38184 . 2 ( TrRel ≀ 𝑅 ↔ ( RefRel ≀ 𝑅 ∧ SymRel ≀ 𝑅 ∧ TrRel ≀ 𝑅))
51, 4bitr4i 278 1 ( EqvRel ≀ 𝑅 ↔ TrRel ≀ 𝑅)
Colors of variables: wff setvar class
Syntax hints:  wb 206  w3a 1087  ccoss 38135   RefRel wrefrel 38141   SymRel wsymrel 38147   TrRel wtrrel 38150   EqvRel weqvrel 38152
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-br 5167  df-opab 5229  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-coss 38367  df-refrel 38468  df-symrel 38500  df-eqvrel 38541
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator