Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > euae | Structured version Visualization version GIF version |
Description: Two ways to express "exactly one thing exists". To paraphrase the statement and explain the label: there Exists a Unique thing if and only if for All 𝑥, 𝑥 Equals some given (and disjoint) 𝑦. Both sides are false in set theory, see Theorems neutru 34575 and dtru 5296. (Contributed by NM, 5-Apr-2004.) State the theorem using truth constant ⊤. (Revised by BJ, 7-Oct-2022.) Reduce axiom dependencies. (Revised by Wolf Lammen, 2-Mar-2023.) |
Ref | Expression |
---|---|
euae | ⊢ (∃!𝑥⊤ ↔ ∀𝑥 𝑥 = 𝑦) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | extru 1982 | . . 3 ⊢ ∃𝑥⊤ | |
2 | 1 | biantrur 530 | . 2 ⊢ (∃𝑦∀𝑥(⊤ → 𝑥 = 𝑦) ↔ (∃𝑥⊤ ∧ ∃𝑦∀𝑥(⊤ → 𝑥 = 𝑦))) |
3 | hbaev 2065 | . . . . 5 ⊢ (∀𝑥 𝑥 = 𝑦 → ∀𝑦∀𝑥 𝑥 = 𝑦) | |
4 | 3 | 19.8w 1985 | . . . 4 ⊢ (∀𝑥 𝑥 = 𝑦 → ∃𝑦∀𝑥 𝑥 = 𝑦) |
5 | hbnaev 2068 | . . . . . 6 ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → ∀𝑦 ¬ ∀𝑥 𝑥 = 𝑦) | |
6 | alnex 1787 | . . . . . 6 ⊢ (∀𝑦 ¬ ∀𝑥 𝑥 = 𝑦 ↔ ¬ ∃𝑦∀𝑥 𝑥 = 𝑦) | |
7 | 5, 6 | sylib 217 | . . . . 5 ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → ¬ ∃𝑦∀𝑥 𝑥 = 𝑦) |
8 | 7 | con4i 114 | . . . 4 ⊢ (∃𝑦∀𝑥 𝑥 = 𝑦 → ∀𝑥 𝑥 = 𝑦) |
9 | 4, 8 | impbii 208 | . . 3 ⊢ (∀𝑥 𝑥 = 𝑦 ↔ ∃𝑦∀𝑥 𝑥 = 𝑦) |
10 | trut 1547 | . . . . 5 ⊢ (𝑥 = 𝑦 ↔ (⊤ → 𝑥 = 𝑦)) | |
11 | 10 | albii 1825 | . . . 4 ⊢ (∀𝑥 𝑥 = 𝑦 ↔ ∀𝑥(⊤ → 𝑥 = 𝑦)) |
12 | 11 | exbii 1853 | . . 3 ⊢ (∃𝑦∀𝑥 𝑥 = 𝑦 ↔ ∃𝑦∀𝑥(⊤ → 𝑥 = 𝑦)) |
13 | 9, 12 | bitri 274 | . 2 ⊢ (∀𝑥 𝑥 = 𝑦 ↔ ∃𝑦∀𝑥(⊤ → 𝑥 = 𝑦)) |
14 | eu3v 2571 | . 2 ⊢ (∃!𝑥⊤ ↔ (∃𝑥⊤ ∧ ∃𝑦∀𝑥(⊤ → 𝑥 = 𝑦))) | |
15 | 2, 13, 14 | 3bitr4ri 303 | 1 ⊢ (∃!𝑥⊤ ↔ ∀𝑥 𝑥 = 𝑦) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 395 ∀wal 1539 ⊤wtru 1542 ∃wex 1785 ∃!weu 2569 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1544 df-ex 1786 df-mo 2541 df-eu 2570 |
This theorem is referenced by: exists1 2663 |
Copyright terms: Public domain | W3C validator |