| Mathbox for Giovanni Mascellani |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > tsim1 | Structured version Visualization version GIF version | ||
| Description: A Tseitin axiom for logical implication, in deduction form. (Contributed by Giovanni Mascellani, 24-Mar-2018.) |
| Ref | Expression |
|---|---|
| tsim1 | ⊢ (𝜃 → ((¬ 𝜑 ∨ 𝜓) ∨ ¬ (𝜑 → 𝜓))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exmid 894 | . . 3 ⊢ ((𝜑 → 𝜓) ∨ ¬ (𝜑 → 𝜓)) | |
| 2 | df-or 848 | . . . . 5 ⊢ ((¬ 𝜑 ∨ 𝜓) ↔ (¬ ¬ 𝜑 → 𝜓)) | |
| 3 | notnotb 315 | . . . . . . 7 ⊢ (𝜑 ↔ ¬ ¬ 𝜑) | |
| 4 | 3 | bicomi 224 | . . . . . 6 ⊢ (¬ ¬ 𝜑 ↔ 𝜑) |
| 5 | 4 | imbi1i 349 | . . . . 5 ⊢ ((¬ ¬ 𝜑 → 𝜓) ↔ (𝜑 → 𝜓)) |
| 6 | 2, 5 | bitri 275 | . . . 4 ⊢ ((¬ 𝜑 ∨ 𝜓) ↔ (𝜑 → 𝜓)) |
| 7 | 6 | orbi1i 913 | . . 3 ⊢ (((¬ 𝜑 ∨ 𝜓) ∨ ¬ (𝜑 → 𝜓)) ↔ ((𝜑 → 𝜓) ∨ ¬ (𝜑 → 𝜓))) |
| 8 | 1, 7 | mpbir 231 | . 2 ⊢ ((¬ 𝜑 ∨ 𝜓) ∨ ¬ (𝜑 → 𝜓)) |
| 9 | 8 | a1i 11 | 1 ⊢ (𝜃 → ((¬ 𝜑 ∨ 𝜓) ∨ ¬ (𝜑 → 𝜓))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∨ wo 847 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-or 848 |
| This theorem is referenced by: mpobi123f 38103 ac6s6 38113 |
| Copyright terms: Public domain | W3C validator |