Mathbox for Giovanni Mascellani |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > tsim1 | Structured version Visualization version GIF version |
Description: A Tseitin axiom for logical implication, in deduction form. (Contributed by Giovanni Mascellani, 24-Mar-2018.) |
Ref | Expression |
---|---|
tsim1 | ⊢ (𝜃 → ((¬ 𝜑 ∨ 𝜓) ∨ ¬ (𝜑 → 𝜓))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exmid 891 | . . 3 ⊢ ((𝜑 → 𝜓) ∨ ¬ (𝜑 → 𝜓)) | |
2 | df-or 844 | . . . . 5 ⊢ ((¬ 𝜑 ∨ 𝜓) ↔ (¬ ¬ 𝜑 → 𝜓)) | |
3 | notnotb 314 | . . . . . . 7 ⊢ (𝜑 ↔ ¬ ¬ 𝜑) | |
4 | 3 | bicomi 223 | . . . . . 6 ⊢ (¬ ¬ 𝜑 ↔ 𝜑) |
5 | 4 | imbi1i 349 | . . . . 5 ⊢ ((¬ ¬ 𝜑 → 𝜓) ↔ (𝜑 → 𝜓)) |
6 | 2, 5 | bitri 274 | . . . 4 ⊢ ((¬ 𝜑 ∨ 𝜓) ↔ (𝜑 → 𝜓)) |
7 | 6 | orbi1i 910 | . . 3 ⊢ (((¬ 𝜑 ∨ 𝜓) ∨ ¬ (𝜑 → 𝜓)) ↔ ((𝜑 → 𝜓) ∨ ¬ (𝜑 → 𝜓))) |
8 | 1, 7 | mpbir 230 | . 2 ⊢ ((¬ 𝜑 ∨ 𝜓) ∨ ¬ (𝜑 → 𝜓)) |
9 | 8 | a1i 11 | 1 ⊢ (𝜃 → ((¬ 𝜑 ∨ 𝜓) ∨ ¬ (𝜑 → 𝜓))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∨ wo 843 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-or 844 |
This theorem is referenced by: mpobi123f 36247 ac6s6 36257 |
Copyright terms: Public domain | W3C validator |