Step | Hyp | Ref
| Expression |
1 | | mpobi123f.1 |
. . . . . . . 8
⊢
Ⅎ𝑥𝐴 |
2 | | mpobi123f.2 |
. . . . . . . 8
⊢
Ⅎ𝑥𝐵 |
3 | 1, 2 | nfeq 2919 |
. . . . . . 7
⊢
Ⅎ𝑥 𝐴 = 𝐵 |
4 | | eleq2 2827 |
. . . . . . 7
⊢ (𝐴 = 𝐵 → (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) |
5 | 3, 4 | alrimi 2209 |
. . . . . 6
⊢ (𝐴 = 𝐵 → ∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) |
6 | | mpobi123f.3 |
. . . . . . . . 9
⊢
Ⅎ𝑦𝐴 |
7 | 6 | nfcri 2893 |
. . . . . . . 8
⊢
Ⅎ𝑦 𝑥 ∈ 𝐴 |
8 | | mpobi123f.4 |
. . . . . . . . 9
⊢
Ⅎ𝑦𝐵 |
9 | 8 | nfcri 2893 |
. . . . . . . 8
⊢
Ⅎ𝑦 𝑥 ∈ 𝐵 |
10 | 7, 9 | nfbi 1907 |
. . . . . . 7
⊢
Ⅎ𝑦(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) |
11 | | ax-5 1914 |
. . . . . . 7
⊢ ((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) → ∀𝑧(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) |
12 | 10, 11 | alrimi 2209 |
. . . . . 6
⊢ ((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) → ∀𝑦∀𝑧(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) |
13 | 5, 12 | sylg 1826 |
. . . . 5
⊢ (𝐴 = 𝐵 → ∀𝑥∀𝑦∀𝑧(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) |
14 | | mpobi123f.5 |
. . . . . . . 8
⊢
Ⅎ𝑦𝐶 |
15 | | mpobi123f.6 |
. . . . . . . 8
⊢
Ⅎ𝑦𝐷 |
16 | 14, 15 | nfeq 2919 |
. . . . . . 7
⊢
Ⅎ𝑦 𝐶 = 𝐷 |
17 | | eleq2 2827 |
. . . . . . 7
⊢ (𝐶 = 𝐷 → (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) |
18 | 16, 17 | alrimi 2209 |
. . . . . 6
⊢ (𝐶 = 𝐷 → ∀𝑦(𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) |
19 | | ax-5 1914 |
. . . . . . 7
⊢ ((𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷) → ∀𝑧(𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) |
20 | 19 | alimi 1815 |
. . . . . 6
⊢
(∀𝑦(𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷) → ∀𝑦∀𝑧(𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) |
21 | | mpobi123f.7 |
. . . . . . . . . . 11
⊢
Ⅎ𝑥𝐶 |
22 | 21 | nfcri 2893 |
. . . . . . . . . 10
⊢
Ⅎ𝑥 𝑦 ∈ 𝐶 |
23 | | mpobi123f.8 |
. . . . . . . . . . 11
⊢
Ⅎ𝑥𝐷 |
24 | 23 | nfcri 2893 |
. . . . . . . . . 10
⊢
Ⅎ𝑥 𝑦 ∈ 𝐷 |
25 | 22, 24 | nfbi 1907 |
. . . . . . . . 9
⊢
Ⅎ𝑥(𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷) |
26 | 25 | nfal 2321 |
. . . . . . . 8
⊢
Ⅎ𝑥∀𝑧(𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷) |
27 | 26 | nfal 2321 |
. . . . . . 7
⊢
Ⅎ𝑥∀𝑦∀𝑧(𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷) |
28 | 27 | nf5ri 2191 |
. . . . . 6
⊢
(∀𝑦∀𝑧(𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷) → ∀𝑥∀𝑦∀𝑧(𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) |
29 | 18, 20, 28 | 3syl 18 |
. . . . 5
⊢ (𝐶 = 𝐷 → ∀𝑥∀𝑦∀𝑧(𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) |
30 | | id 22 |
. . . . . . . 8
⊢ (((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) → ((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷))) |
31 | 30 | alanimi 1820 |
. . . . . . 7
⊢
((∀𝑧(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ ∀𝑧(𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) → ∀𝑧((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷))) |
32 | 31 | alanimi 1820 |
. . . . . 6
⊢
((∀𝑦∀𝑧(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ ∀𝑦∀𝑧(𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) → ∀𝑦∀𝑧((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷))) |
33 | 32 | alanimi 1820 |
. . . . 5
⊢
((∀𝑥∀𝑦∀𝑧(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ ∀𝑥∀𝑦∀𝑧(𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) → ∀𝑥∀𝑦∀𝑧((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷))) |
34 | 13, 29, 33 | syl2an 595 |
. . . 4
⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → ∀𝑥∀𝑦∀𝑧((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷))) |
35 | | eqeq2 2750 |
. . . . . . 7
⊢ (𝐸 = 𝐹 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)) |
36 | 35 | alrimiv 1931 |
. . . . . 6
⊢ (𝐸 = 𝐹 → ∀𝑧(𝑧 = 𝐸 ↔ 𝑧 = 𝐹)) |
37 | 36 | 2ralimi 3087 |
. . . . 5
⊢
(∀𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐶 𝐸 = 𝐹 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐶 ∀𝑧(𝑧 = 𝐸 ↔ 𝑧 = 𝐹)) |
38 | | hbra1 3143 |
. . . . . . . . 9
⊢
(∀𝑦 ∈
𝐶 ∀𝑧(𝑧 = 𝐸 ↔ 𝑧 = 𝐹) → ∀𝑦∀𝑦 ∈ 𝐶 ∀𝑧(𝑧 = 𝐸 ↔ 𝑧 = 𝐹)) |
39 | | rsp 3129 |
. . . . . . . . 9
⊢
(∀𝑦 ∈
𝐶 ∀𝑧(𝑧 = 𝐸 ↔ 𝑧 = 𝐹) → (𝑦 ∈ 𝐶 → ∀𝑧(𝑧 = 𝐸 ↔ 𝑧 = 𝐹))) |
40 | 38, 39 | alrimih 1827 |
. . . . . . . 8
⊢
(∀𝑦 ∈
𝐶 ∀𝑧(𝑧 = 𝐸 ↔ 𝑧 = 𝐹) → ∀𝑦(𝑦 ∈ 𝐶 → ∀𝑧(𝑧 = 𝐸 ↔ 𝑧 = 𝐹))) |
41 | | 19.21v 1943 |
. . . . . . . . 9
⊢
(∀𝑧(𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)) ↔ (𝑦 ∈ 𝐶 → ∀𝑧(𝑧 = 𝐸 ↔ 𝑧 = 𝐹))) |
42 | 41 | albii 1823 |
. . . . . . . 8
⊢
(∀𝑦∀𝑧(𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)) ↔ ∀𝑦(𝑦 ∈ 𝐶 → ∀𝑧(𝑧 = 𝐸 ↔ 𝑧 = 𝐹))) |
43 | 40, 42 | sylibr 233 |
. . . . . . 7
⊢
(∀𝑦 ∈
𝐶 ∀𝑧(𝑧 = 𝐸 ↔ 𝑧 = 𝐹) → ∀𝑦∀𝑧(𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹))) |
44 | 43 | ralimi 3086 |
. . . . . 6
⊢
(∀𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐶 ∀𝑧(𝑧 = 𝐸 ↔ 𝑧 = 𝐹) → ∀𝑥 ∈ 𝐴 ∀𝑦∀𝑧(𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹))) |
45 | | hbra1 3143 |
. . . . . . 7
⊢
(∀𝑥 ∈
𝐴 ∀𝑦∀𝑧(𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)) → ∀𝑥∀𝑥 ∈ 𝐴 ∀𝑦∀𝑧(𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹))) |
46 | | rsp 3129 |
. . . . . . 7
⊢
(∀𝑥 ∈
𝐴 ∀𝑦∀𝑧(𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)) → (𝑥 ∈ 𝐴 → ∀𝑦∀𝑧(𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) |
47 | 45, 46 | alrimih 1827 |
. . . . . 6
⊢
(∀𝑥 ∈
𝐴 ∀𝑦∀𝑧(𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)) → ∀𝑥(𝑥 ∈ 𝐴 → ∀𝑦∀𝑧(𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) |
48 | | 19.21v 1943 |
. . . . . . . 8
⊢
(∀𝑧(𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹))) ↔ (𝑥 ∈ 𝐴 → ∀𝑧(𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) |
49 | 48 | 2albii 1824 |
. . . . . . 7
⊢
(∀𝑥∀𝑦∀𝑧(𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹))) ↔ ∀𝑥∀𝑦(𝑥 ∈ 𝐴 → ∀𝑧(𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) |
50 | 7 | 19.21 2203 |
. . . . . . . 8
⊢
(∀𝑦(𝑥 ∈ 𝐴 → ∀𝑧(𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹))) ↔ (𝑥 ∈ 𝐴 → ∀𝑦∀𝑧(𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) |
51 | 50 | albii 1823 |
. . . . . . 7
⊢
(∀𝑥∀𝑦(𝑥 ∈ 𝐴 → ∀𝑧(𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹))) ↔ ∀𝑥(𝑥 ∈ 𝐴 → ∀𝑦∀𝑧(𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) |
52 | 49, 51 | sylbbr 235 |
. . . . . 6
⊢
(∀𝑥(𝑥 ∈ 𝐴 → ∀𝑦∀𝑧(𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹))) → ∀𝑥∀𝑦∀𝑧(𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) |
53 | 44, 47, 52 | 3syl 18 |
. . . . 5
⊢
(∀𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐶 ∀𝑧(𝑧 = 𝐸 ↔ 𝑧 = 𝐹) → ∀𝑥∀𝑦∀𝑧(𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) |
54 | 37, 53 | syl 17 |
. . . 4
⊢
(∀𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐶 𝐸 = 𝐹 → ∀𝑥∀𝑦∀𝑧(𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) |
55 | | id 22 |
. . . . . . 7
⊢ ((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹))))) |
56 | 55 | alanimi 1820 |
. . . . . 6
⊢
((∀𝑧((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ ∀𝑧(𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → ∀𝑧(((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹))))) |
57 | 56 | alanimi 1820 |
. . . . 5
⊢
((∀𝑦∀𝑧((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ ∀𝑦∀𝑧(𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → ∀𝑦∀𝑧(((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹))))) |
58 | 57 | alanimi 1820 |
. . . 4
⊢
((∀𝑥∀𝑦∀𝑧((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ ∀𝑥∀𝑦∀𝑧(𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → ∀𝑥∀𝑦∀𝑧(((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹))))) |
59 | 34, 54, 58 | syl2an 595 |
. . 3
⊢ (((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐶 𝐸 = 𝐹) → ∀𝑥∀𝑦∀𝑧(((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹))))) |
60 | | tsan2 36227 |
. . . . . . . . . . . . 13
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → (𝑥 ∈ 𝐴 ∨ ¬ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶))) |
61 | 60 | ord 860 |
. . . . . . . . . . . 12
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → (¬ 𝑥 ∈ 𝐴 → ¬ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶))) |
62 | | tsan2 36227 |
. . . . . . . . . . . . 13
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∨ ¬ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸))) |
63 | 62 | a1d 25 |
. . . . . . . . . . . 12
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → (¬ 𝑥 ∈ 𝐴 → ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∨ ¬ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸)))) |
64 | 61, 63 | cnf1dd 36175 |
. . . . . . . . . . 11
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → (¬ 𝑥 ∈ 𝐴 → ¬ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸))) |
65 | | tsbi2 36219 |
. . . . . . . . . . . . . . 15
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → ((((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ∨ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹)) ∨ (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹)))) |
66 | 65 | ord 860 |
. . . . . . . . . . . . . 14
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → (¬ (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ∨ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹)) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹)))) |
67 | 66 | a1dd 50 |
. . . . . . . . . . . . 13
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → (¬ (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ∨ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹)) → ((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))))) |
68 | | ax-1 6 |
. . . . . . . . . . . . 13
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → (¬ (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ∨ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹)) → ¬ ((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))))) |
69 | 67, 68 | contrd 36182 |
. . . . . . . . . . . 12
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ∨ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) |
70 | 69 | a1d 25 |
. . . . . . . . . . 11
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → (¬ 𝑥 ∈ 𝐴 → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ∨ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹)))) |
71 | 64, 70 | cnf1dd 36175 |
. . . . . . . . . 10
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → (¬ 𝑥 ∈ 𝐴 → ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) |
72 | | idd 24 |
. . . . . . . . . . . . 13
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → (¬ 𝑥 ∈ 𝐴 → ¬ 𝑥 ∈ 𝐴)) |
73 | | tsan2 36227 |
. . . . . . . . . . . . . . . . . . 19
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → ((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∨ ¬ ((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)))) |
74 | 73 | ord 860 |
. . . . . . . . . . . . . . . . . 18
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → (¬ (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) → ¬ ((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)))) |
75 | | tsan2 36227 |
. . . . . . . . . . . . . . . . . . 19
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → (((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∨ ¬ (((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))))) |
76 | 75 | a1d 25 |
. . . . . . . . . . . . . . . . . 18
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → (¬ (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) → (((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∨ ¬ (((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹))))))) |
77 | 74, 76 | cnf1dd 36175 |
. . . . . . . . . . . . . . . . 17
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → (¬ (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) → ¬ (((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))))) |
78 | | tsim2 36216 |
. . . . . . . . . . . . . . . . . 18
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → ((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) ∨ ((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))))) |
79 | 78 | a1d 25 |
. . . . . . . . . . . . . . . . 17
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → (¬ (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) → ((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) ∨ ((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹)))))) |
80 | 77, 79 | cnf1dd 36175 |
. . . . . . . . . . . . . . . 16
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → (¬ (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) → ((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))))) |
81 | | ax-1 6 |
. . . . . . . . . . . . . . . 16
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → (¬ (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) → ¬ ((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))))) |
82 | 80, 81 | contrd 36182 |
. . . . . . . . . . . . . . 15
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) |
83 | 82 | a1d 25 |
. . . . . . . . . . . . . 14
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → (¬ 𝑥 ∈ 𝐴 → (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵))) |
84 | | tsbi3 36220 |
. . . . . . . . . . . . . . 15
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → ((𝑥 ∈ 𝐴 ∨ ¬ 𝑥 ∈ 𝐵) ∨ ¬ (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵))) |
85 | 84 | a1d 25 |
. . . . . . . . . . . . . 14
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → (¬ 𝑥 ∈ 𝐴 → ((𝑥 ∈ 𝐴 ∨ ¬ 𝑥 ∈ 𝐵) ∨ ¬ (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)))) |
86 | 83, 85 | cnfn2dd 36178 |
. . . . . . . . . . . . 13
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → (¬ 𝑥 ∈ 𝐴 → (𝑥 ∈ 𝐴 ∨ ¬ 𝑥 ∈ 𝐵))) |
87 | 72, 86 | cnf1dd 36175 |
. . . . . . . . . . . 12
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → (¬ 𝑥 ∈ 𝐴 → ¬ 𝑥 ∈ 𝐵)) |
88 | | tsan2 36227 |
. . . . . . . . . . . . 13
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → (𝑥 ∈ 𝐵 ∨ ¬ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷))) |
89 | 88 | a1d 25 |
. . . . . . . . . . . 12
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → (¬ 𝑥 ∈ 𝐴 → (𝑥 ∈ 𝐵 ∨ ¬ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷)))) |
90 | 87, 89 | cnf1dd 36175 |
. . . . . . . . . . 11
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → (¬ 𝑥 ∈ 𝐴 → ¬ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷))) |
91 | | tsan2 36227 |
. . . . . . . . . . . 12
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∨ ¬ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) |
92 | 91 | a1d 25 |
. . . . . . . . . . 11
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → (¬ 𝑥 ∈ 𝐴 → ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∨ ¬ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹)))) |
93 | 90, 92 | cnf1dd 36175 |
. . . . . . . . . 10
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → (¬ 𝑥 ∈ 𝐴 → ¬ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) |
94 | 71, 93 | contrd 36182 |
. . . . . . . . 9
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → 𝑥 ∈ 𝐴) |
95 | 94 | a1d 25 |
. . . . . . . 8
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → (¬ ⊥ → 𝑥 ∈ 𝐴)) |
96 | | ax-1 6 |
. . . . . . . . . 10
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → (¬ ⊥ → ¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))))) |
97 | 78 | a1d 25 |
. . . . . . . . . 10
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → (¬ ⊥ → ((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) ∨ ((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹)))))) |
98 | 96, 97 | cnf2dd 36176 |
. . . . . . . . 9
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → (¬ ⊥ → (((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))))) |
99 | | tsan3 36228 |
. . . . . . . . . 10
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → ((𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹))) ∨ ¬ (((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))))) |
100 | 99 | a1d 25 |
. . . . . . . . 9
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → (¬ ⊥ → ((𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹))) ∨ ¬ (((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹))))))) |
101 | 98, 100 | cnfn2dd 36178 |
. . . . . . . 8
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → (¬ ⊥ → (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹))))) |
102 | 95, 101 | mpdd 43 |
. . . . . . 7
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → (¬ ⊥ → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) |
103 | | notnotr 130 |
. . . . . . . . . . . . . . . . . 18
⊢ (¬
¬ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹) → ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹)) |
104 | 103 | a1i 11 |
. . . . . . . . . . . . . . . . 17
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → (¬ ¬ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹) → ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) |
105 | 91 | a1d 25 |
. . . . . . . . . . . . . . . . 17
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → (¬ ¬ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹) → ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∨ ¬ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹)))) |
106 | 104, 105 | cnfn2dd 36178 |
. . . . . . . . . . . . . . . 16
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → (¬ ¬ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹) → (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷))) |
107 | | tsan3 36228 |
. . . . . . . . . . . . . . . . 17
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → (𝑦 ∈ 𝐷 ∨ ¬ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷))) |
108 | 107 | a1d 25 |
. . . . . . . . . . . . . . . 16
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → (¬ ¬ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹) → (𝑦 ∈ 𝐷 ∨ ¬ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷)))) |
109 | 106, 108 | cnfn2dd 36178 |
. . . . . . . . . . . . . . 15
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → (¬ ¬ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹) → 𝑦 ∈ 𝐷)) |
110 | | tsan3 36228 |
. . . . . . . . . . . . . . . . . . 19
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → ((𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷) ∨ ¬ ((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)))) |
111 | 110 | ord 860 |
. . . . . . . . . . . . . . . . . 18
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → (¬ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷) → ¬ ((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)))) |
112 | 75 | a1d 25 |
. . . . . . . . . . . . . . . . . 18
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → (¬ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷) → (((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∨ ¬ (((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹))))))) |
113 | 111, 112 | cnf1dd 36175 |
. . . . . . . . . . . . . . . . 17
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → (¬ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷) → ¬ (((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))))) |
114 | 78 | a1d 25 |
. . . . . . . . . . . . . . . . 17
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → (¬ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷) → ((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) ∨ ((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹)))))) |
115 | 113, 114 | cnf1dd 36175 |
. . . . . . . . . . . . . . . 16
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → (¬ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷) → ((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))))) |
116 | | ax-1 6 |
. . . . . . . . . . . . . . . 16
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → (¬ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷) → ¬ ((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))))) |
117 | 115, 116 | contrd 36182 |
. . . . . . . . . . . . . . 15
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) |
118 | 109, 117 | sylibrd 258 |
. . . . . . . . . . . . . 14
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → (¬ ¬ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹) → 𝑦 ∈ 𝐶)) |
119 | 94 | a1d 25 |
. . . . . . . . . . . . . . 15
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → (¬ ¬ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹) → 𝑥 ∈ 𝐴)) |
120 | | ax-1 6 |
. . . . . . . . . . . . . . . . 17
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → (¬ ¬ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹) → ¬ ((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))))) |
121 | 78 | a1d 25 |
. . . . . . . . . . . . . . . . 17
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → (¬ ¬ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹) → ((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) ∨ ((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹)))))) |
122 | 120, 121 | cnf2dd 36176 |
. . . . . . . . . . . . . . . 16
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → (¬ ¬ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹) → (((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))))) |
123 | 99 | a1d 25 |
. . . . . . . . . . . . . . . 16
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → (¬ ¬ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹) → ((𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹))) ∨ ¬ (((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹))))))) |
124 | 122, 123 | cnfn2dd 36178 |
. . . . . . . . . . . . . . 15
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → (¬ ¬ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹) → (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹))))) |
125 | 119, 124 | mpdd 43 |
. . . . . . . . . . . . . 14
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → (¬ ¬ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹) → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) |
126 | 118, 125 | mpdd 43 |
. . . . . . . . . . . . 13
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → (¬ ¬ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹) → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹))) |
127 | 119, 118 | jcad 512 |
. . . . . . . . . . . . . . 15
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → (¬ ¬ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹) → (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶))) |
128 | | tsim3 36217 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → (¬ (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹)) ∨ ((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))))) |
129 | 128 | a1d 25 |
. . . . . . . . . . . . . . . . . . 19
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → (¬ ¬ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹) → (¬ (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹)) ∨ ((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹)))))) |
130 | 120, 129 | cnf2dd 36176 |
. . . . . . . . . . . . . . . . . 18
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → (¬ ¬ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹) → ¬ (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹)))) |
131 | | tsbi1 36218 |
. . . . . . . . . . . . . . . . . . 19
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → ((¬ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ∨ ¬ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹)) ∨ (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹)))) |
132 | 131 | a1d 25 |
. . . . . . . . . . . . . . . . . 18
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → (¬ ¬ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹) → ((¬ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ∨ ¬ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹)) ∨ (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))))) |
133 | 130, 132 | cnf2dd 36176 |
. . . . . . . . . . . . . . . . 17
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → (¬ ¬ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹) → (¬ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ∨ ¬ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹)))) |
134 | 104, 133 | cnfn2dd 36178 |
. . . . . . . . . . . . . . . 16
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → (¬ ¬ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹) → ¬ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸))) |
135 | | tsan1 36226 |
. . . . . . . . . . . . . . . . 17
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → ((¬ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∨ ¬ 𝑧 = 𝐸) ∨ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸))) |
136 | 135 | a1d 25 |
. . . . . . . . . . . . . . . 16
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → (¬ ¬ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹) → ((¬ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∨ ¬ 𝑧 = 𝐸) ∨ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸)))) |
137 | 134, 136 | cnf2dd 36176 |
. . . . . . . . . . . . . . 15
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → (¬ ¬ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹) → (¬ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∨ ¬ 𝑧 = 𝐸))) |
138 | 127, 137 | cnfn1dd 36177 |
. . . . . . . . . . . . . 14
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → (¬ ¬ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹) → ¬ 𝑧 = 𝐸)) |
139 | | tsan3 36228 |
. . . . . . . . . . . . . . . . 17
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → (𝑧 = 𝐹 ∨ ¬ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) |
140 | 139 | a1d 25 |
. . . . . . . . . . . . . . . 16
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → (¬ ¬ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹) → (𝑧 = 𝐹 ∨ ¬ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹)))) |
141 | 104, 140 | cnfn2dd 36178 |
. . . . . . . . . . . . . . 15
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → (¬ ¬ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹) → 𝑧 = 𝐹)) |
142 | | tsbi3 36220 |
. . . . . . . . . . . . . . . . 17
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → ((𝑧 = 𝐸 ∨ ¬ 𝑧 = 𝐹) ∨ ¬ (𝑧 = 𝐸 ↔ 𝑧 = 𝐹))) |
143 | 142 | a1d 25 |
. . . . . . . . . . . . . . . 16
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → (¬ ¬ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹) → ((𝑧 = 𝐸 ∨ ¬ 𝑧 = 𝐹) ∨ ¬ (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) |
144 | 143 | or32dd 36179 |
. . . . . . . . . . . . . . 15
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → (¬ ¬ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹) → ((𝑧 = 𝐸 ∨ ¬ (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)) ∨ ¬ 𝑧 = 𝐹))) |
145 | 141, 144 | cnfn2dd 36178 |
. . . . . . . . . . . . . 14
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → (¬ ¬ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹) → (𝑧 = 𝐸 ∨ ¬ (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) |
146 | 138, 145 | cnf1dd 36175 |
. . . . . . . . . . . . 13
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → (¬ ¬ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹) → ¬ (𝑧 = 𝐸 ↔ 𝑧 = 𝐹))) |
147 | 126, 146 | contrd 36182 |
. . . . . . . . . . . 12
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → ¬ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹)) |
148 | 147 | a1d 25 |
. . . . . . . . . . 11
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → (¬ ⊥ → ¬
((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) |
149 | 128 | a1d 25 |
. . . . . . . . . . . . 13
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → (¬ ⊥ → (¬
(((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹)) ∨ ((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹)))))) |
150 | 96, 149 | cnf2dd 36176 |
. . . . . . . . . . . 12
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → (¬ ⊥ → ¬
(((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹)))) |
151 | 65 | a1d 25 |
. . . . . . . . . . . 12
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → (¬ ⊥ → ((((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ∨ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹)) ∨ (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))))) |
152 | 150, 151 | cnf2dd 36176 |
. . . . . . . . . . 11
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → (¬ ⊥ → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ∨ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹)))) |
153 | 148, 152 | cnf2dd 36176 |
. . . . . . . . . 10
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → (¬ ⊥ → ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸))) |
154 | 62 | a1d 25 |
. . . . . . . . . 10
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → (¬ ⊥ → ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∨ ¬ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸)))) |
155 | 153, 154 | cnfn2dd 36178 |
. . . . . . . . 9
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → (¬ ⊥ → (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶))) |
156 | | tsan3 36228 |
. . . . . . . . . 10
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → (𝑦 ∈ 𝐶 ∨ ¬ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶))) |
157 | 156 | a1d 25 |
. . . . . . . . 9
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → (¬ ⊥ → (𝑦 ∈ 𝐶 ∨ ¬ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶)))) |
158 | 155, 157 | cnfn2dd 36178 |
. . . . . . . 8
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → (¬ ⊥ → 𝑦 ∈ 𝐶)) |
159 | | tsan3 36228 |
. . . . . . . . . . . 12
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → (𝑧 = 𝐸 ∨ ¬ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸))) |
160 | 159 | a1d 25 |
. . . . . . . . . . 11
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → (¬ ⊥ → (𝑧 = 𝐸 ∨ ¬ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸)))) |
161 | 153, 160 | cnfn2dd 36178 |
. . . . . . . . . 10
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → (¬ ⊥ → 𝑧 = 𝐸)) |
162 | 95, 82 | sylibd 238 |
. . . . . . . . . . . . 13
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → (¬ ⊥ → 𝑥 ∈ 𝐵)) |
163 | 158, 117 | sylibd 238 |
. . . . . . . . . . . . 13
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → (¬ ⊥ → 𝑦 ∈ 𝐷)) |
164 | 162, 163 | jcad 512 |
. . . . . . . . . . . 12
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → (¬ ⊥ → (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷))) |
165 | | tsan1 36226 |
. . . . . . . . . . . . . 14
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → ((¬ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∨ ¬ 𝑧 = 𝐹) ∨ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) |
166 | 165 | a1d 25 |
. . . . . . . . . . . . 13
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → (¬ ⊥ → ((¬
(𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∨ ¬ 𝑧 = 𝐹) ∨ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹)))) |
167 | 148, 166 | cnf2dd 36176 |
. . . . . . . . . . . 12
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → (¬ ⊥ → (¬
(𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∨ ¬ 𝑧 = 𝐹))) |
168 | 164, 167 | cnfn1dd 36177 |
. . . . . . . . . . 11
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → (¬ ⊥ → ¬ 𝑧 = 𝐹)) |
169 | | tsbi4 36221 |
. . . . . . . . . . . . 13
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → ((¬ 𝑧 = 𝐸 ∨ 𝑧 = 𝐹) ∨ ¬ (𝑧 = 𝐸 ↔ 𝑧 = 𝐹))) |
170 | 169 | a1d 25 |
. . . . . . . . . . . 12
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → (¬ ⊥ → ((¬
𝑧 = 𝐸 ∨ 𝑧 = 𝐹) ∨ ¬ (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) |
171 | 170 | or32dd 36179 |
. . . . . . . . . . 11
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → (¬ ⊥ → ((¬
𝑧 = 𝐸 ∨ ¬ (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)) ∨ 𝑧 = 𝐹))) |
172 | 168, 171 | cnf2dd 36176 |
. . . . . . . . . 10
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → (¬ ⊥ → (¬ 𝑧 = 𝐸 ∨ ¬ (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) |
173 | 161, 172 | cnfn1dd 36177 |
. . . . . . . . 9
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → (¬ ⊥ → ¬ (𝑧 = 𝐸 ↔ 𝑧 = 𝐹))) |
174 | | tsim1 36215 |
. . . . . . . . . . 11
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → ((¬ 𝑦 ∈ 𝐶 ∨ (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)) ∨ ¬ (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) |
175 | 174 | a1d 25 |
. . . . . . . . . 10
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → (¬ ⊥ → ((¬
𝑦 ∈ 𝐶 ∨ (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)) ∨ ¬ (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹))))) |
176 | 175 | or32dd 36179 |
. . . . . . . . 9
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → (¬ ⊥ → ((¬
𝑦 ∈ 𝐶 ∨ ¬ (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹))) ∨ (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) |
177 | 173, 176 | cnf2dd 36176 |
. . . . . . . 8
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → (¬ ⊥ → (¬ 𝑦 ∈ 𝐶 ∨ ¬ (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹))))) |
178 | 158, 177 | cnfn1dd 36177 |
. . . . . . 7
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → (¬ ⊥ → ¬ (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) |
179 | 102, 178 | contrd 36182 |
. . . . . 6
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → ⊥) |
180 | 179 | efald2 36163 |
. . . . 5
⊢ ((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) |
181 | 180 | alimi 1815 |
. . . 4
⊢
(∀𝑧(((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → ∀𝑧(((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) |
182 | 181 | 2alimi 1816 |
. . 3
⊢
(∀𝑥∀𝑦∀𝑧(((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → ∀𝑥∀𝑦∀𝑧(((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) |
183 | | oprabbi 36246 |
. . 3
⊢
(∀𝑥∀𝑦∀𝑧(((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹)) → {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸)} = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹)}) |
184 | 59, 182, 183 | 3syl 18 |
. 2
⊢ (((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐶 𝐸 = 𝐹) → {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸)} = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹)}) |
185 | | df-mpo 7260 |
. 2
⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐶 ↦ 𝐸) = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸)} |
186 | | df-mpo 7260 |
. 2
⊢ (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐷 ↦ 𝐹) = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹)} |
187 | 184, 185,
186 | 3eqtr4g 2804 |
1
⊢ (((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐶 𝐸 = 𝐹) → (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐶 ↦ 𝐸) = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐷 ↦ 𝐹)) |