| Step | Hyp | Ref
| Expression |
| 1 | | mpobi123f.1 |
. . . . . . . 8
⊢
Ⅎ𝑥𝐴 |
| 2 | | mpobi123f.2 |
. . . . . . . 8
⊢
Ⅎ𝑥𝐵 |
| 3 | 1, 2 | nfeq 2919 |
. . . . . . 7
⊢
Ⅎ𝑥 𝐴 = 𝐵 |
| 4 | | eleq2 2830 |
. . . . . . 7
⊢ (𝐴 = 𝐵 → (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) |
| 5 | 3, 4 | alrimi 2213 |
. . . . . 6
⊢ (𝐴 = 𝐵 → ∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) |
| 6 | | mpobi123f.3 |
. . . . . . . . 9
⊢
Ⅎ𝑦𝐴 |
| 7 | 6 | nfcri 2897 |
. . . . . . . 8
⊢
Ⅎ𝑦 𝑥 ∈ 𝐴 |
| 8 | | mpobi123f.4 |
. . . . . . . . 9
⊢
Ⅎ𝑦𝐵 |
| 9 | 8 | nfcri 2897 |
. . . . . . . 8
⊢
Ⅎ𝑦 𝑥 ∈ 𝐵 |
| 10 | 7, 9 | nfbi 1903 |
. . . . . . 7
⊢
Ⅎ𝑦(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) |
| 11 | | ax-5 1910 |
. . . . . . 7
⊢ ((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) → ∀𝑧(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) |
| 12 | 10, 11 | alrimi 2213 |
. . . . . 6
⊢ ((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) → ∀𝑦∀𝑧(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) |
| 13 | 5, 12 | sylg 1823 |
. . . . 5
⊢ (𝐴 = 𝐵 → ∀𝑥∀𝑦∀𝑧(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) |
| 14 | | mpobi123f.5 |
. . . . . . . 8
⊢
Ⅎ𝑦𝐶 |
| 15 | | mpobi123f.6 |
. . . . . . . 8
⊢
Ⅎ𝑦𝐷 |
| 16 | 14, 15 | nfeq 2919 |
. . . . . . 7
⊢
Ⅎ𝑦 𝐶 = 𝐷 |
| 17 | | eleq2 2830 |
. . . . . . 7
⊢ (𝐶 = 𝐷 → (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) |
| 18 | 16, 17 | alrimi 2213 |
. . . . . 6
⊢ (𝐶 = 𝐷 → ∀𝑦(𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) |
| 19 | | ax-5 1910 |
. . . . . . 7
⊢ ((𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷) → ∀𝑧(𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) |
| 20 | 19 | alimi 1811 |
. . . . . 6
⊢
(∀𝑦(𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷) → ∀𝑦∀𝑧(𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) |
| 21 | | mpobi123f.7 |
. . . . . . . . . . 11
⊢
Ⅎ𝑥𝐶 |
| 22 | 21 | nfcri 2897 |
. . . . . . . . . 10
⊢
Ⅎ𝑥 𝑦 ∈ 𝐶 |
| 23 | | mpobi123f.8 |
. . . . . . . . . . 11
⊢
Ⅎ𝑥𝐷 |
| 24 | 23 | nfcri 2897 |
. . . . . . . . . 10
⊢
Ⅎ𝑥 𝑦 ∈ 𝐷 |
| 25 | 22, 24 | nfbi 1903 |
. . . . . . . . 9
⊢
Ⅎ𝑥(𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷) |
| 26 | 25 | nfal 2323 |
. . . . . . . 8
⊢
Ⅎ𝑥∀𝑧(𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷) |
| 27 | 26 | nfal 2323 |
. . . . . . 7
⊢
Ⅎ𝑥∀𝑦∀𝑧(𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷) |
| 28 | 27 | nf5ri 2195 |
. . . . . 6
⊢
(∀𝑦∀𝑧(𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷) → ∀𝑥∀𝑦∀𝑧(𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) |
| 29 | 18, 20, 28 | 3syl 18 |
. . . . 5
⊢ (𝐶 = 𝐷 → ∀𝑥∀𝑦∀𝑧(𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) |
| 30 | | id 22 |
. . . . . . . 8
⊢ (((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) → ((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷))) |
| 31 | 30 | alanimi 1816 |
. . . . . . 7
⊢
((∀𝑧(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ ∀𝑧(𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) → ∀𝑧((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷))) |
| 32 | 31 | alanimi 1816 |
. . . . . 6
⊢
((∀𝑦∀𝑧(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ ∀𝑦∀𝑧(𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) → ∀𝑦∀𝑧((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷))) |
| 33 | 32 | alanimi 1816 |
. . . . 5
⊢
((∀𝑥∀𝑦∀𝑧(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ ∀𝑥∀𝑦∀𝑧(𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) → ∀𝑥∀𝑦∀𝑧((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷))) |
| 34 | 13, 29, 33 | syl2an 596 |
. . . 4
⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → ∀𝑥∀𝑦∀𝑧((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷))) |
| 35 | | eqeq2 2749 |
. . . . . . 7
⊢ (𝐸 = 𝐹 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)) |
| 36 | 35 | alrimiv 1927 |
. . . . . 6
⊢ (𝐸 = 𝐹 → ∀𝑧(𝑧 = 𝐸 ↔ 𝑧 = 𝐹)) |
| 37 | 36 | 2ralimi 3123 |
. . . . 5
⊢
(∀𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐶 𝐸 = 𝐹 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐶 ∀𝑧(𝑧 = 𝐸 ↔ 𝑧 = 𝐹)) |
| 38 | | hbra1 3301 |
. . . . . . . 8
⊢
(∀𝑦 ∈
𝐶 ∀𝑧(𝑧 = 𝐸 ↔ 𝑧 = 𝐹) → ∀𝑦∀𝑦 ∈ 𝐶 ∀𝑧(𝑧 = 𝐸 ↔ 𝑧 = 𝐹)) |
| 39 | | rsp 3247 |
. . . . . . . 8
⊢
(∀𝑦 ∈
𝐶 ∀𝑧(𝑧 = 𝐸 ↔ 𝑧 = 𝐹) → (𝑦 ∈ 𝐶 → ∀𝑧(𝑧 = 𝐸 ↔ 𝑧 = 𝐹))) |
| 40 | 38, 39 | alrimih 1824 |
. . . . . . 7
⊢
(∀𝑦 ∈
𝐶 ∀𝑧(𝑧 = 𝐸 ↔ 𝑧 = 𝐹) → ∀𝑦(𝑦 ∈ 𝐶 → ∀𝑧(𝑧 = 𝐸 ↔ 𝑧 = 𝐹))) |
| 41 | | 19.21v 1939 |
. . . . . . . 8
⊢
(∀𝑧(𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)) ↔ (𝑦 ∈ 𝐶 → ∀𝑧(𝑧 = 𝐸 ↔ 𝑧 = 𝐹))) |
| 42 | 41 | albii 1819 |
. . . . . . 7
⊢
(∀𝑦∀𝑧(𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)) ↔ ∀𝑦(𝑦 ∈ 𝐶 → ∀𝑧(𝑧 = 𝐸 ↔ 𝑧 = 𝐹))) |
| 43 | 40, 42 | sylibr 234 |
. . . . . 6
⊢
(∀𝑦 ∈
𝐶 ∀𝑧(𝑧 = 𝐸 ↔ 𝑧 = 𝐹) → ∀𝑦∀𝑧(𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹))) |
| 44 | 43 | ralimi 3083 |
. . . . 5
⊢
(∀𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐶 ∀𝑧(𝑧 = 𝐸 ↔ 𝑧 = 𝐹) → ∀𝑥 ∈ 𝐴 ∀𝑦∀𝑧(𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹))) |
| 45 | | hbra1 3301 |
. . . . . 6
⊢
(∀𝑥 ∈
𝐴 ∀𝑦∀𝑧(𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)) → ∀𝑥∀𝑥 ∈ 𝐴 ∀𝑦∀𝑧(𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹))) |
| 46 | | rsp 3247 |
. . . . . 6
⊢
(∀𝑥 ∈
𝐴 ∀𝑦∀𝑧(𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)) → (𝑥 ∈ 𝐴 → ∀𝑦∀𝑧(𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) |
| 47 | 45, 46 | alrimih 1824 |
. . . . 5
⊢
(∀𝑥 ∈
𝐴 ∀𝑦∀𝑧(𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)) → ∀𝑥(𝑥 ∈ 𝐴 → ∀𝑦∀𝑧(𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) |
| 48 | | 19.21v 1939 |
. . . . . . 7
⊢
(∀𝑧(𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹))) ↔ (𝑥 ∈ 𝐴 → ∀𝑧(𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) |
| 49 | 48 | 2albii 1820 |
. . . . . 6
⊢
(∀𝑥∀𝑦∀𝑧(𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹))) ↔ ∀𝑥∀𝑦(𝑥 ∈ 𝐴 → ∀𝑧(𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) |
| 50 | 7 | 19.21 2207 |
. . . . . . 7
⊢
(∀𝑦(𝑥 ∈ 𝐴 → ∀𝑧(𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹))) ↔ (𝑥 ∈ 𝐴 → ∀𝑦∀𝑧(𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) |
| 51 | 50 | albii 1819 |
. . . . . 6
⊢
(∀𝑥∀𝑦(𝑥 ∈ 𝐴 → ∀𝑧(𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹))) ↔ ∀𝑥(𝑥 ∈ 𝐴 → ∀𝑦∀𝑧(𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) |
| 52 | 49, 51 | sylbbr 236 |
. . . . 5
⊢
(∀𝑥(𝑥 ∈ 𝐴 → ∀𝑦∀𝑧(𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹))) → ∀𝑥∀𝑦∀𝑧(𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) |
| 53 | 37, 44, 47, 52 | 4syl 19 |
. . . 4
⊢
(∀𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐶 𝐸 = 𝐹 → ∀𝑥∀𝑦∀𝑧(𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) |
| 54 | | id 22 |
. . . . . . 7
⊢ ((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹))))) |
| 55 | 54 | alanimi 1816 |
. . . . . 6
⊢
((∀𝑧((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ ∀𝑧(𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → ∀𝑧(((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹))))) |
| 56 | 55 | alanimi 1816 |
. . . . 5
⊢
((∀𝑦∀𝑧((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ ∀𝑦∀𝑧(𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → ∀𝑦∀𝑧(((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹))))) |
| 57 | 56 | alanimi 1816 |
. . . 4
⊢
((∀𝑥∀𝑦∀𝑧((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ ∀𝑥∀𝑦∀𝑧(𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → ∀𝑥∀𝑦∀𝑧(((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹))))) |
| 58 | 34, 53, 57 | syl2an 596 |
. . 3
⊢ (((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐶 𝐸 = 𝐹) → ∀𝑥∀𝑦∀𝑧(((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹))))) |
| 59 | | tsan2 38149 |
. . . . . . . . . . . . 13
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → (𝑥 ∈ 𝐴 ∨ ¬ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶))) |
| 60 | 59 | ord 865 |
. . . . . . . . . . . 12
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → (¬ 𝑥 ∈ 𝐴 → ¬ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶))) |
| 61 | | tsan2 38149 |
. . . . . . . . . . . . 13
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∨ ¬ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸))) |
| 62 | 61 | a1d 25 |
. . . . . . . . . . . 12
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → (¬ 𝑥 ∈ 𝐴 → ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∨ ¬ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸)))) |
| 63 | 60, 62 | cnf1dd 38097 |
. . . . . . . . . . 11
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → (¬ 𝑥 ∈ 𝐴 → ¬ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸))) |
| 64 | | tsbi2 38141 |
. . . . . . . . . . . . . . 15
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → ((((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ∨ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹)) ∨ (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹)))) |
| 65 | 64 | ord 865 |
. . . . . . . . . . . . . 14
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → (¬ (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ∨ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹)) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹)))) |
| 66 | 65 | a1dd 50 |
. . . . . . . . . . . . 13
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → (¬ (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ∨ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹)) → ((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))))) |
| 67 | | ax-1 6 |
. . . . . . . . . . . . 13
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → (¬ (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ∨ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹)) → ¬ ((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))))) |
| 68 | 66, 67 | contrd 38104 |
. . . . . . . . . . . 12
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ∨ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) |
| 69 | 68 | a1d 25 |
. . . . . . . . . . 11
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → (¬ 𝑥 ∈ 𝐴 → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ∨ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹)))) |
| 70 | 63, 69 | cnf1dd 38097 |
. . . . . . . . . 10
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → (¬ 𝑥 ∈ 𝐴 → ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) |
| 71 | | idd 24 |
. . . . . . . . . . . . 13
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → (¬ 𝑥 ∈ 𝐴 → ¬ 𝑥 ∈ 𝐴)) |
| 72 | | tsan2 38149 |
. . . . . . . . . . . . . . . . . . 19
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → ((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∨ ¬ ((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)))) |
| 73 | 72 | ord 865 |
. . . . . . . . . . . . . . . . . 18
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → (¬ (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) → ¬ ((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)))) |
| 74 | | tsan2 38149 |
. . . . . . . . . . . . . . . . . . 19
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → (((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∨ ¬ (((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))))) |
| 75 | 74 | a1d 25 |
. . . . . . . . . . . . . . . . . 18
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → (¬ (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) → (((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∨ ¬ (((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹))))))) |
| 76 | 73, 75 | cnf1dd 38097 |
. . . . . . . . . . . . . . . . 17
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → (¬ (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) → ¬ (((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))))) |
| 77 | | tsim2 38138 |
. . . . . . . . . . . . . . . . . 18
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → ((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) ∨ ((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))))) |
| 78 | 77 | a1d 25 |
. . . . . . . . . . . . . . . . 17
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → (¬ (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) → ((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) ∨ ((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹)))))) |
| 79 | 76, 78 | cnf1dd 38097 |
. . . . . . . . . . . . . . . 16
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → (¬ (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) → ((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))))) |
| 80 | | ax-1 6 |
. . . . . . . . . . . . . . . 16
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → (¬ (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) → ¬ ((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))))) |
| 81 | 79, 80 | contrd 38104 |
. . . . . . . . . . . . . . 15
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) |
| 82 | 81 | a1d 25 |
. . . . . . . . . . . . . 14
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → (¬ 𝑥 ∈ 𝐴 → (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵))) |
| 83 | | tsbi3 38142 |
. . . . . . . . . . . . . . 15
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → ((𝑥 ∈ 𝐴 ∨ ¬ 𝑥 ∈ 𝐵) ∨ ¬ (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵))) |
| 84 | 83 | a1d 25 |
. . . . . . . . . . . . . 14
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → (¬ 𝑥 ∈ 𝐴 → ((𝑥 ∈ 𝐴 ∨ ¬ 𝑥 ∈ 𝐵) ∨ ¬ (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)))) |
| 85 | 82, 84 | cnfn2dd 38100 |
. . . . . . . . . . . . 13
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → (¬ 𝑥 ∈ 𝐴 → (𝑥 ∈ 𝐴 ∨ ¬ 𝑥 ∈ 𝐵))) |
| 86 | 71, 85 | cnf1dd 38097 |
. . . . . . . . . . . 12
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → (¬ 𝑥 ∈ 𝐴 → ¬ 𝑥 ∈ 𝐵)) |
| 87 | | tsan2 38149 |
. . . . . . . . . . . . 13
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → (𝑥 ∈ 𝐵 ∨ ¬ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷))) |
| 88 | 87 | a1d 25 |
. . . . . . . . . . . 12
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → (¬ 𝑥 ∈ 𝐴 → (𝑥 ∈ 𝐵 ∨ ¬ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷)))) |
| 89 | 86, 88 | cnf1dd 38097 |
. . . . . . . . . . 11
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → (¬ 𝑥 ∈ 𝐴 → ¬ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷))) |
| 90 | | tsan2 38149 |
. . . . . . . . . . . 12
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∨ ¬ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) |
| 91 | 90 | a1d 25 |
. . . . . . . . . . 11
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → (¬ 𝑥 ∈ 𝐴 → ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∨ ¬ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹)))) |
| 92 | 89, 91 | cnf1dd 38097 |
. . . . . . . . . 10
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → (¬ 𝑥 ∈ 𝐴 → ¬ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) |
| 93 | 70, 92 | contrd 38104 |
. . . . . . . . 9
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → 𝑥 ∈ 𝐴) |
| 94 | 93 | a1d 25 |
. . . . . . . 8
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → (¬ ⊥ → 𝑥 ∈ 𝐴)) |
| 95 | | ax-1 6 |
. . . . . . . . . 10
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → (¬ ⊥ → ¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))))) |
| 96 | 77 | a1d 25 |
. . . . . . . . . 10
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → (¬ ⊥ → ((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) ∨ ((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹)))))) |
| 97 | 95, 96 | cnf2dd 38098 |
. . . . . . . . 9
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → (¬ ⊥ → (((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))))) |
| 98 | | tsan3 38150 |
. . . . . . . . . 10
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → ((𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹))) ∨ ¬ (((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))))) |
| 99 | 98 | a1d 25 |
. . . . . . . . 9
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → (¬ ⊥ → ((𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹))) ∨ ¬ (((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹))))))) |
| 100 | 97, 99 | cnfn2dd 38100 |
. . . . . . . 8
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → (¬ ⊥ → (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹))))) |
| 101 | 94, 100 | mpdd 43 |
. . . . . . 7
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → (¬ ⊥ → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) |
| 102 | | notnotr 130 |
. . . . . . . . . . . . . . . . . 18
⊢ (¬
¬ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹) → ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹)) |
| 103 | 102 | a1i 11 |
. . . . . . . . . . . . . . . . 17
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → (¬ ¬ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹) → ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) |
| 104 | 90 | a1d 25 |
. . . . . . . . . . . . . . . . 17
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → (¬ ¬ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹) → ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∨ ¬ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹)))) |
| 105 | 103, 104 | cnfn2dd 38100 |
. . . . . . . . . . . . . . . 16
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → (¬ ¬ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹) → (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷))) |
| 106 | | tsan3 38150 |
. . . . . . . . . . . . . . . . 17
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → (𝑦 ∈ 𝐷 ∨ ¬ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷))) |
| 107 | 106 | a1d 25 |
. . . . . . . . . . . . . . . 16
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → (¬ ¬ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹) → (𝑦 ∈ 𝐷 ∨ ¬ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷)))) |
| 108 | 105, 107 | cnfn2dd 38100 |
. . . . . . . . . . . . . . 15
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → (¬ ¬ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹) → 𝑦 ∈ 𝐷)) |
| 109 | | tsan3 38150 |
. . . . . . . . . . . . . . . . . . 19
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → ((𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷) ∨ ¬ ((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)))) |
| 110 | 109 | ord 865 |
. . . . . . . . . . . . . . . . . 18
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → (¬ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷) → ¬ ((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)))) |
| 111 | 74 | a1d 25 |
. . . . . . . . . . . . . . . . . 18
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → (¬ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷) → (((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∨ ¬ (((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹))))))) |
| 112 | 110, 111 | cnf1dd 38097 |
. . . . . . . . . . . . . . . . 17
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → (¬ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷) → ¬ (((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))))) |
| 113 | 77 | a1d 25 |
. . . . . . . . . . . . . . . . 17
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → (¬ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷) → ((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) ∨ ((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹)))))) |
| 114 | 112, 113 | cnf1dd 38097 |
. . . . . . . . . . . . . . . 16
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → (¬ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷) → ((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))))) |
| 115 | | ax-1 6 |
. . . . . . . . . . . . . . . 16
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → (¬ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷) → ¬ ((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))))) |
| 116 | 114, 115 | contrd 38104 |
. . . . . . . . . . . . . . 15
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) |
| 117 | 108, 116 | sylibrd 259 |
. . . . . . . . . . . . . 14
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → (¬ ¬ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹) → 𝑦 ∈ 𝐶)) |
| 118 | 93 | a1d 25 |
. . . . . . . . . . . . . . 15
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → (¬ ¬ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹) → 𝑥 ∈ 𝐴)) |
| 119 | | ax-1 6 |
. . . . . . . . . . . . . . . . 17
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → (¬ ¬ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹) → ¬ ((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))))) |
| 120 | 77 | a1d 25 |
. . . . . . . . . . . . . . . . 17
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → (¬ ¬ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹) → ((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) ∨ ((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹)))))) |
| 121 | 119, 120 | cnf2dd 38098 |
. . . . . . . . . . . . . . . 16
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → (¬ ¬ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹) → (((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))))) |
| 122 | 98 | a1d 25 |
. . . . . . . . . . . . . . . 16
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → (¬ ¬ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹) → ((𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹))) ∨ ¬ (((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹))))))) |
| 123 | 121, 122 | cnfn2dd 38100 |
. . . . . . . . . . . . . . 15
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → (¬ ¬ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹) → (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹))))) |
| 124 | 118, 123 | mpdd 43 |
. . . . . . . . . . . . . 14
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → (¬ ¬ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹) → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) |
| 125 | 117, 124 | mpdd 43 |
. . . . . . . . . . . . 13
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → (¬ ¬ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹) → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹))) |
| 126 | 118, 117 | jcad 512 |
. . . . . . . . . . . . . . 15
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → (¬ ¬ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹) → (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶))) |
| 127 | | tsim3 38139 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → (¬ (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹)) ∨ ((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))))) |
| 128 | 127 | a1d 25 |
. . . . . . . . . . . . . . . . . . 19
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → (¬ ¬ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹) → (¬ (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹)) ∨ ((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹)))))) |
| 129 | 119, 128 | cnf2dd 38098 |
. . . . . . . . . . . . . . . . . 18
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → (¬ ¬ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹) → ¬ (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹)))) |
| 130 | | tsbi1 38140 |
. . . . . . . . . . . . . . . . . . 19
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → ((¬ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ∨ ¬ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹)) ∨ (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹)))) |
| 131 | 130 | a1d 25 |
. . . . . . . . . . . . . . . . . 18
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → (¬ ¬ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹) → ((¬ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ∨ ¬ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹)) ∨ (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))))) |
| 132 | 129, 131 | cnf2dd 38098 |
. . . . . . . . . . . . . . . . 17
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → (¬ ¬ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹) → (¬ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ∨ ¬ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹)))) |
| 133 | 103, 132 | cnfn2dd 38100 |
. . . . . . . . . . . . . . . 16
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → (¬ ¬ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹) → ¬ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸))) |
| 134 | | tsan1 38148 |
. . . . . . . . . . . . . . . . 17
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → ((¬ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∨ ¬ 𝑧 = 𝐸) ∨ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸))) |
| 135 | 134 | a1d 25 |
. . . . . . . . . . . . . . . 16
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → (¬ ¬ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹) → ((¬ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∨ ¬ 𝑧 = 𝐸) ∨ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸)))) |
| 136 | 133, 135 | cnf2dd 38098 |
. . . . . . . . . . . . . . 15
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → (¬ ¬ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹) → (¬ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∨ ¬ 𝑧 = 𝐸))) |
| 137 | 126, 136 | cnfn1dd 38099 |
. . . . . . . . . . . . . 14
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → (¬ ¬ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹) → ¬ 𝑧 = 𝐸)) |
| 138 | | tsan3 38150 |
. . . . . . . . . . . . . . . . 17
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → (𝑧 = 𝐹 ∨ ¬ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) |
| 139 | 138 | a1d 25 |
. . . . . . . . . . . . . . . 16
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → (¬ ¬ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹) → (𝑧 = 𝐹 ∨ ¬ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹)))) |
| 140 | 103, 139 | cnfn2dd 38100 |
. . . . . . . . . . . . . . 15
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → (¬ ¬ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹) → 𝑧 = 𝐹)) |
| 141 | | tsbi3 38142 |
. . . . . . . . . . . . . . . . 17
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → ((𝑧 = 𝐸 ∨ ¬ 𝑧 = 𝐹) ∨ ¬ (𝑧 = 𝐸 ↔ 𝑧 = 𝐹))) |
| 142 | 141 | a1d 25 |
. . . . . . . . . . . . . . . 16
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → (¬ ¬ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹) → ((𝑧 = 𝐸 ∨ ¬ 𝑧 = 𝐹) ∨ ¬ (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) |
| 143 | 142 | or32dd 38101 |
. . . . . . . . . . . . . . 15
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → (¬ ¬ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹) → ((𝑧 = 𝐸 ∨ ¬ (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)) ∨ ¬ 𝑧 = 𝐹))) |
| 144 | 140, 143 | cnfn2dd 38100 |
. . . . . . . . . . . . . 14
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → (¬ ¬ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹) → (𝑧 = 𝐸 ∨ ¬ (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) |
| 145 | 137, 144 | cnf1dd 38097 |
. . . . . . . . . . . . 13
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → (¬ ¬ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹) → ¬ (𝑧 = 𝐸 ↔ 𝑧 = 𝐹))) |
| 146 | 125, 145 | contrd 38104 |
. . . . . . . . . . . 12
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → ¬ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹)) |
| 147 | 146 | a1d 25 |
. . . . . . . . . . 11
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → (¬ ⊥ → ¬
((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) |
| 148 | 127 | a1d 25 |
. . . . . . . . . . . . 13
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → (¬ ⊥ → (¬
(((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹)) ∨ ((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹)))))) |
| 149 | 95, 148 | cnf2dd 38098 |
. . . . . . . . . . . 12
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → (¬ ⊥ → ¬
(((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹)))) |
| 150 | 64 | a1d 25 |
. . . . . . . . . . . 12
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → (¬ ⊥ → ((((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ∨ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹)) ∨ (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))))) |
| 151 | 149, 150 | cnf2dd 38098 |
. . . . . . . . . . 11
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → (¬ ⊥ → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ∨ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹)))) |
| 152 | 147, 151 | cnf2dd 38098 |
. . . . . . . . . 10
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → (¬ ⊥ → ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸))) |
| 153 | 61 | a1d 25 |
. . . . . . . . . 10
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → (¬ ⊥ → ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∨ ¬ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸)))) |
| 154 | 152, 153 | cnfn2dd 38100 |
. . . . . . . . 9
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → (¬ ⊥ → (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶))) |
| 155 | | tsan3 38150 |
. . . . . . . . . 10
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → (𝑦 ∈ 𝐶 ∨ ¬ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶))) |
| 156 | 155 | a1d 25 |
. . . . . . . . 9
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → (¬ ⊥ → (𝑦 ∈ 𝐶 ∨ ¬ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶)))) |
| 157 | 154, 156 | cnfn2dd 38100 |
. . . . . . . 8
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → (¬ ⊥ → 𝑦 ∈ 𝐶)) |
| 158 | | tsan3 38150 |
. . . . . . . . . . . 12
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → (𝑧 = 𝐸 ∨ ¬ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸))) |
| 159 | 158 | a1d 25 |
. . . . . . . . . . 11
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → (¬ ⊥ → (𝑧 = 𝐸 ∨ ¬ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸)))) |
| 160 | 152, 159 | cnfn2dd 38100 |
. . . . . . . . . 10
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → (¬ ⊥ → 𝑧 = 𝐸)) |
| 161 | 94, 81 | sylibd 239 |
. . . . . . . . . . . . 13
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → (¬ ⊥ → 𝑥 ∈ 𝐵)) |
| 162 | 157, 116 | sylibd 239 |
. . . . . . . . . . . . 13
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → (¬ ⊥ → 𝑦 ∈ 𝐷)) |
| 163 | 161, 162 | jcad 512 |
. . . . . . . . . . . 12
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → (¬ ⊥ → (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷))) |
| 164 | | tsan1 38148 |
. . . . . . . . . . . . . 14
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → ((¬ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∨ ¬ 𝑧 = 𝐹) ∨ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) |
| 165 | 164 | a1d 25 |
. . . . . . . . . . . . 13
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → (¬ ⊥ → ((¬
(𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∨ ¬ 𝑧 = 𝐹) ∨ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹)))) |
| 166 | 147, 165 | cnf2dd 38098 |
. . . . . . . . . . . 12
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → (¬ ⊥ → (¬
(𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∨ ¬ 𝑧 = 𝐹))) |
| 167 | 163, 166 | cnfn1dd 38099 |
. . . . . . . . . . 11
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → (¬ ⊥ → ¬ 𝑧 = 𝐹)) |
| 168 | | tsbi4 38143 |
. . . . . . . . . . . . 13
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → ((¬ 𝑧 = 𝐸 ∨ 𝑧 = 𝐹) ∨ ¬ (𝑧 = 𝐸 ↔ 𝑧 = 𝐹))) |
| 169 | 168 | a1d 25 |
. . . . . . . . . . . 12
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → (¬ ⊥ → ((¬
𝑧 = 𝐸 ∨ 𝑧 = 𝐹) ∨ ¬ (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) |
| 170 | 169 | or32dd 38101 |
. . . . . . . . . . 11
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → (¬ ⊥ → ((¬
𝑧 = 𝐸 ∨ ¬ (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)) ∨ 𝑧 = 𝐹))) |
| 171 | 167, 170 | cnf2dd 38098 |
. . . . . . . . . 10
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → (¬ ⊥ → (¬ 𝑧 = 𝐸 ∨ ¬ (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) |
| 172 | 160, 171 | cnfn1dd 38099 |
. . . . . . . . 9
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → (¬ ⊥ → ¬ (𝑧 = 𝐸 ↔ 𝑧 = 𝐹))) |
| 173 | | tsim1 38137 |
. . . . . . . . . . 11
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → ((¬ 𝑦 ∈ 𝐶 ∨ (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)) ∨ ¬ (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) |
| 174 | 173 | a1d 25 |
. . . . . . . . . 10
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → (¬ ⊥ → ((¬
𝑦 ∈ 𝐶 ∨ (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)) ∨ ¬ (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹))))) |
| 175 | 174 | or32dd 38101 |
. . . . . . . . 9
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → (¬ ⊥ → ((¬
𝑦 ∈ 𝐶 ∨ ¬ (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹))) ∨ (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) |
| 176 | 172, 175 | cnf2dd 38098 |
. . . . . . . 8
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → (¬ ⊥ → (¬ 𝑦 ∈ 𝐶 ∨ ¬ (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹))))) |
| 177 | 157, 176 | cnfn1dd 38099 |
. . . . . . 7
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → (¬ ⊥ → ¬ (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) |
| 178 | 101, 177 | contrd 38104 |
. . . . . 6
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → ⊥) |
| 179 | 178 | efald2 38085 |
. . . . 5
⊢ ((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) |
| 180 | 179 | alimi 1811 |
. . . 4
⊢
(∀𝑧(((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → ∀𝑧(((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) |
| 181 | 180 | 2alimi 1812 |
. . 3
⊢
(∀𝑥∀𝑦∀𝑧(((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → ∀𝑥∀𝑦∀𝑧(((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) |
| 182 | | oprabbi 38168 |
. . 3
⊢
(∀𝑥∀𝑦∀𝑧(((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹)) → {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸)} = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹)}) |
| 183 | 58, 181, 182 | 3syl 18 |
. 2
⊢ (((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐶 𝐸 = 𝐹) → {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸)} = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹)}) |
| 184 | | df-mpo 7436 |
. 2
⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐶 ↦ 𝐸) = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸)} |
| 185 | | df-mpo 7436 |
. 2
⊢ (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐷 ↦ 𝐹) = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹)} |
| 186 | 183, 184,
185 | 3eqtr4g 2802 |
1
⊢ (((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐶 𝐸 = 𝐹) → (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐶 ↦ 𝐸) = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐷 ↦ 𝐹)) |