Users' Mathboxes Mathbox for Giovanni Mascellani < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mpobi123f Structured version   Visualization version   GIF version

Theorem mpobi123f 37766
Description: Equality deduction for maps-to notations with two arguments. (Contributed by Giovanni Mascellani, 10-Apr-2018.)
Hypotheses
Ref Expression
mpobi123f.1 𝑥𝐴
mpobi123f.2 𝑥𝐵
mpobi123f.3 𝑦𝐴
mpobi123f.4 𝑦𝐵
mpobi123f.5 𝑦𝐶
mpobi123f.6 𝑦𝐷
mpobi123f.7 𝑥𝐶
mpobi123f.8 𝑥𝐷
Assertion
Ref Expression
mpobi123f (((𝐴 = 𝐵𝐶 = 𝐷) ∧ ∀𝑥𝐴𝑦𝐶 𝐸 = 𝐹) → (𝑥𝐴, 𝑦𝐶𝐸) = (𝑥𝐵, 𝑦𝐷𝐹))
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦)   𝐵(𝑥,𝑦)   𝐶(𝑥,𝑦)   𝐷(𝑥,𝑦)   𝐸(𝑥,𝑦)   𝐹(𝑥,𝑦)

Proof of Theorem mpobi123f
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 mpobi123f.1 . . . . . . . 8 𝑥𝐴
2 mpobi123f.2 . . . . . . . 8 𝑥𝐵
31, 2nfeq 2905 . . . . . . 7 𝑥 𝐴 = 𝐵
4 eleq2 2814 . . . . . . 7 (𝐴 = 𝐵 → (𝑥𝐴𝑥𝐵))
53, 4alrimi 2201 . . . . . 6 (𝐴 = 𝐵 → ∀𝑥(𝑥𝐴𝑥𝐵))
6 mpobi123f.3 . . . . . . . . 9 𝑦𝐴
76nfcri 2882 . . . . . . . 8 𝑦 𝑥𝐴
8 mpobi123f.4 . . . . . . . . 9 𝑦𝐵
98nfcri 2882 . . . . . . . 8 𝑦 𝑥𝐵
107, 9nfbi 1898 . . . . . . 7 𝑦(𝑥𝐴𝑥𝐵)
11 ax-5 1905 . . . . . . 7 ((𝑥𝐴𝑥𝐵) → ∀𝑧(𝑥𝐴𝑥𝐵))
1210, 11alrimi 2201 . . . . . 6 ((𝑥𝐴𝑥𝐵) → ∀𝑦𝑧(𝑥𝐴𝑥𝐵))
135, 12sylg 1817 . . . . 5 (𝐴 = 𝐵 → ∀𝑥𝑦𝑧(𝑥𝐴𝑥𝐵))
14 mpobi123f.5 . . . . . . . 8 𝑦𝐶
15 mpobi123f.6 . . . . . . . 8 𝑦𝐷
1614, 15nfeq 2905 . . . . . . 7 𝑦 𝐶 = 𝐷
17 eleq2 2814 . . . . . . 7 (𝐶 = 𝐷 → (𝑦𝐶𝑦𝐷))
1816, 17alrimi 2201 . . . . . 6 (𝐶 = 𝐷 → ∀𝑦(𝑦𝐶𝑦𝐷))
19 ax-5 1905 . . . . . . 7 ((𝑦𝐶𝑦𝐷) → ∀𝑧(𝑦𝐶𝑦𝐷))
2019alimi 1805 . . . . . 6 (∀𝑦(𝑦𝐶𝑦𝐷) → ∀𝑦𝑧(𝑦𝐶𝑦𝐷))
21 mpobi123f.7 . . . . . . . . . . 11 𝑥𝐶
2221nfcri 2882 . . . . . . . . . 10 𝑥 𝑦𝐶
23 mpobi123f.8 . . . . . . . . . . 11 𝑥𝐷
2423nfcri 2882 . . . . . . . . . 10 𝑥 𝑦𝐷
2522, 24nfbi 1898 . . . . . . . . 9 𝑥(𝑦𝐶𝑦𝐷)
2625nfal 2311 . . . . . . . 8 𝑥𝑧(𝑦𝐶𝑦𝐷)
2726nfal 2311 . . . . . . 7 𝑥𝑦𝑧(𝑦𝐶𝑦𝐷)
2827nf5ri 2183 . . . . . 6 (∀𝑦𝑧(𝑦𝐶𝑦𝐷) → ∀𝑥𝑦𝑧(𝑦𝐶𝑦𝐷))
2918, 20, 283syl 18 . . . . 5 (𝐶 = 𝐷 → ∀𝑥𝑦𝑧(𝑦𝐶𝑦𝐷))
30 id 22 . . . . . . . 8 (((𝑥𝐴𝑥𝐵) ∧ (𝑦𝐶𝑦𝐷)) → ((𝑥𝐴𝑥𝐵) ∧ (𝑦𝐶𝑦𝐷)))
3130alanimi 1810 . . . . . . 7 ((∀𝑧(𝑥𝐴𝑥𝐵) ∧ ∀𝑧(𝑦𝐶𝑦𝐷)) → ∀𝑧((𝑥𝐴𝑥𝐵) ∧ (𝑦𝐶𝑦𝐷)))
3231alanimi 1810 . . . . . 6 ((∀𝑦𝑧(𝑥𝐴𝑥𝐵) ∧ ∀𝑦𝑧(𝑦𝐶𝑦𝐷)) → ∀𝑦𝑧((𝑥𝐴𝑥𝐵) ∧ (𝑦𝐶𝑦𝐷)))
3332alanimi 1810 . . . . 5 ((∀𝑥𝑦𝑧(𝑥𝐴𝑥𝐵) ∧ ∀𝑥𝑦𝑧(𝑦𝐶𝑦𝐷)) → ∀𝑥𝑦𝑧((𝑥𝐴𝑥𝐵) ∧ (𝑦𝐶𝑦𝐷)))
3413, 29, 33syl2an 594 . . . 4 ((𝐴 = 𝐵𝐶 = 𝐷) → ∀𝑥𝑦𝑧((𝑥𝐴𝑥𝐵) ∧ (𝑦𝐶𝑦𝐷)))
35 eqeq2 2737 . . . . . . 7 (𝐸 = 𝐹 → (𝑧 = 𝐸𝑧 = 𝐹))
3635alrimiv 1922 . . . . . 6 (𝐸 = 𝐹 → ∀𝑧(𝑧 = 𝐸𝑧 = 𝐹))
37362ralimi 3112 . . . . 5 (∀𝑥𝐴𝑦𝐶 𝐸 = 𝐹 → ∀𝑥𝐴𝑦𝐶𝑧(𝑧 = 𝐸𝑧 = 𝐹))
38 hbra1 3288 . . . . . . . 8 (∀𝑦𝐶𝑧(𝑧 = 𝐸𝑧 = 𝐹) → ∀𝑦𝑦𝐶𝑧(𝑧 = 𝐸𝑧 = 𝐹))
39 rsp 3234 . . . . . . . 8 (∀𝑦𝐶𝑧(𝑧 = 𝐸𝑧 = 𝐹) → (𝑦𝐶 → ∀𝑧(𝑧 = 𝐸𝑧 = 𝐹)))
4038, 39alrimih 1818 . . . . . . 7 (∀𝑦𝐶𝑧(𝑧 = 𝐸𝑧 = 𝐹) → ∀𝑦(𝑦𝐶 → ∀𝑧(𝑧 = 𝐸𝑧 = 𝐹)))
41 19.21v 1934 . . . . . . . 8 (∀𝑧(𝑦𝐶 → (𝑧 = 𝐸𝑧 = 𝐹)) ↔ (𝑦𝐶 → ∀𝑧(𝑧 = 𝐸𝑧 = 𝐹)))
4241albii 1813 . . . . . . 7 (∀𝑦𝑧(𝑦𝐶 → (𝑧 = 𝐸𝑧 = 𝐹)) ↔ ∀𝑦(𝑦𝐶 → ∀𝑧(𝑧 = 𝐸𝑧 = 𝐹)))
4340, 42sylibr 233 . . . . . 6 (∀𝑦𝐶𝑧(𝑧 = 𝐸𝑧 = 𝐹) → ∀𝑦𝑧(𝑦𝐶 → (𝑧 = 𝐸𝑧 = 𝐹)))
4443ralimi 3072 . . . . 5 (∀𝑥𝐴𝑦𝐶𝑧(𝑧 = 𝐸𝑧 = 𝐹) → ∀𝑥𝐴𝑦𝑧(𝑦𝐶 → (𝑧 = 𝐸𝑧 = 𝐹)))
45 hbra1 3288 . . . . . 6 (∀𝑥𝐴𝑦𝑧(𝑦𝐶 → (𝑧 = 𝐸𝑧 = 𝐹)) → ∀𝑥𝑥𝐴𝑦𝑧(𝑦𝐶 → (𝑧 = 𝐸𝑧 = 𝐹)))
46 rsp 3234 . . . . . 6 (∀𝑥𝐴𝑦𝑧(𝑦𝐶 → (𝑧 = 𝐸𝑧 = 𝐹)) → (𝑥𝐴 → ∀𝑦𝑧(𝑦𝐶 → (𝑧 = 𝐸𝑧 = 𝐹))))
4745, 46alrimih 1818 . . . . 5 (∀𝑥𝐴𝑦𝑧(𝑦𝐶 → (𝑧 = 𝐸𝑧 = 𝐹)) → ∀𝑥(𝑥𝐴 → ∀𝑦𝑧(𝑦𝐶 → (𝑧 = 𝐸𝑧 = 𝐹))))
48 19.21v 1934 . . . . . . 7 (∀𝑧(𝑥𝐴 → (𝑦𝐶 → (𝑧 = 𝐸𝑧 = 𝐹))) ↔ (𝑥𝐴 → ∀𝑧(𝑦𝐶 → (𝑧 = 𝐸𝑧 = 𝐹))))
49482albii 1814 . . . . . 6 (∀𝑥𝑦𝑧(𝑥𝐴 → (𝑦𝐶 → (𝑧 = 𝐸𝑧 = 𝐹))) ↔ ∀𝑥𝑦(𝑥𝐴 → ∀𝑧(𝑦𝐶 → (𝑧 = 𝐸𝑧 = 𝐹))))
50719.21 2195 . . . . . . 7 (∀𝑦(𝑥𝐴 → ∀𝑧(𝑦𝐶 → (𝑧 = 𝐸𝑧 = 𝐹))) ↔ (𝑥𝐴 → ∀𝑦𝑧(𝑦𝐶 → (𝑧 = 𝐸𝑧 = 𝐹))))
5150albii 1813 . . . . . 6 (∀𝑥𝑦(𝑥𝐴 → ∀𝑧(𝑦𝐶 → (𝑧 = 𝐸𝑧 = 𝐹))) ↔ ∀𝑥(𝑥𝐴 → ∀𝑦𝑧(𝑦𝐶 → (𝑧 = 𝐸𝑧 = 𝐹))))
5249, 51sylbbr 235 . . . . 5 (∀𝑥(𝑥𝐴 → ∀𝑦𝑧(𝑦𝐶 → (𝑧 = 𝐸𝑧 = 𝐹))) → ∀𝑥𝑦𝑧(𝑥𝐴 → (𝑦𝐶 → (𝑧 = 𝐸𝑧 = 𝐹))))
5337, 44, 47, 524syl 19 . . . 4 (∀𝑥𝐴𝑦𝐶 𝐸 = 𝐹 → ∀𝑥𝑦𝑧(𝑥𝐴 → (𝑦𝐶 → (𝑧 = 𝐸𝑧 = 𝐹))))
54 id 22 . . . . . . 7 ((((𝑥𝐴𝑥𝐵) ∧ (𝑦𝐶𝑦𝐷)) ∧ (𝑥𝐴 → (𝑦𝐶 → (𝑧 = 𝐸𝑧 = 𝐹)))) → (((𝑥𝐴𝑥𝐵) ∧ (𝑦𝐶𝑦𝐷)) ∧ (𝑥𝐴 → (𝑦𝐶 → (𝑧 = 𝐸𝑧 = 𝐹)))))
5554alanimi 1810 . . . . . 6 ((∀𝑧((𝑥𝐴𝑥𝐵) ∧ (𝑦𝐶𝑦𝐷)) ∧ ∀𝑧(𝑥𝐴 → (𝑦𝐶 → (𝑧 = 𝐸𝑧 = 𝐹)))) → ∀𝑧(((𝑥𝐴𝑥𝐵) ∧ (𝑦𝐶𝑦𝐷)) ∧ (𝑥𝐴 → (𝑦𝐶 → (𝑧 = 𝐸𝑧 = 𝐹)))))
5655alanimi 1810 . . . . 5 ((∀𝑦𝑧((𝑥𝐴𝑥𝐵) ∧ (𝑦𝐶𝑦𝐷)) ∧ ∀𝑦𝑧(𝑥𝐴 → (𝑦𝐶 → (𝑧 = 𝐸𝑧 = 𝐹)))) → ∀𝑦𝑧(((𝑥𝐴𝑥𝐵) ∧ (𝑦𝐶𝑦𝐷)) ∧ (𝑥𝐴 → (𝑦𝐶 → (𝑧 = 𝐸𝑧 = 𝐹)))))
5756alanimi 1810 . . . 4 ((∀𝑥𝑦𝑧((𝑥𝐴𝑥𝐵) ∧ (𝑦𝐶𝑦𝐷)) ∧ ∀𝑥𝑦𝑧(𝑥𝐴 → (𝑦𝐶 → (𝑧 = 𝐸𝑧 = 𝐹)))) → ∀𝑥𝑦𝑧(((𝑥𝐴𝑥𝐵) ∧ (𝑦𝐶𝑦𝐷)) ∧ (𝑥𝐴 → (𝑦𝐶 → (𝑧 = 𝐸𝑧 = 𝐹)))))
5834, 53, 57syl2an 594 . . 3 (((𝐴 = 𝐵𝐶 = 𝐷) ∧ ∀𝑥𝐴𝑦𝐶 𝐸 = 𝐹) → ∀𝑥𝑦𝑧(((𝑥𝐴𝑥𝐵) ∧ (𝑦𝐶𝑦𝐷)) ∧ (𝑥𝐴 → (𝑦𝐶 → (𝑧 = 𝐸𝑧 = 𝐹)))))
59 tsan2 37746 . . . . . . . . . . . . 13 (¬ ((((𝑥𝐴𝑥𝐵) ∧ (𝑦𝐶𝑦𝐷)) ∧ (𝑥𝐴 → (𝑦𝐶 → (𝑧 = 𝐸𝑧 = 𝐹)))) → (((𝑥𝐴𝑦𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥𝐵𝑦𝐷) ∧ 𝑧 = 𝐹))) → (𝑥𝐴 ∨ ¬ (𝑥𝐴𝑦𝐶)))
6059ord 862 . . . . . . . . . . . 12 (¬ ((((𝑥𝐴𝑥𝐵) ∧ (𝑦𝐶𝑦𝐷)) ∧ (𝑥𝐴 → (𝑦𝐶 → (𝑧 = 𝐸𝑧 = 𝐹)))) → (((𝑥𝐴𝑦𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥𝐵𝑦𝐷) ∧ 𝑧 = 𝐹))) → (¬ 𝑥𝐴 → ¬ (𝑥𝐴𝑦𝐶)))
61 tsan2 37746 . . . . . . . . . . . . 13 (¬ ((((𝑥𝐴𝑥𝐵) ∧ (𝑦𝐶𝑦𝐷)) ∧ (𝑥𝐴 → (𝑦𝐶 → (𝑧 = 𝐸𝑧 = 𝐹)))) → (((𝑥𝐴𝑦𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥𝐵𝑦𝐷) ∧ 𝑧 = 𝐹))) → ((𝑥𝐴𝑦𝐶) ∨ ¬ ((𝑥𝐴𝑦𝐶) ∧ 𝑧 = 𝐸)))
6261a1d 25 . . . . . . . . . . . 12 (¬ ((((𝑥𝐴𝑥𝐵) ∧ (𝑦𝐶𝑦𝐷)) ∧ (𝑥𝐴 → (𝑦𝐶 → (𝑧 = 𝐸𝑧 = 𝐹)))) → (((𝑥𝐴𝑦𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥𝐵𝑦𝐷) ∧ 𝑧 = 𝐹))) → (¬ 𝑥𝐴 → ((𝑥𝐴𝑦𝐶) ∨ ¬ ((𝑥𝐴𝑦𝐶) ∧ 𝑧 = 𝐸))))
6360, 62cnf1dd 37694 . . . . . . . . . . 11 (¬ ((((𝑥𝐴𝑥𝐵) ∧ (𝑦𝐶𝑦𝐷)) ∧ (𝑥𝐴 → (𝑦𝐶 → (𝑧 = 𝐸𝑧 = 𝐹)))) → (((𝑥𝐴𝑦𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥𝐵𝑦𝐷) ∧ 𝑧 = 𝐹))) → (¬ 𝑥𝐴 → ¬ ((𝑥𝐴𝑦𝐶) ∧ 𝑧 = 𝐸)))
64 tsbi2 37738 . . . . . . . . . . . . . . 15 (¬ ((((𝑥𝐴𝑥𝐵) ∧ (𝑦𝐶𝑦𝐷)) ∧ (𝑥𝐴 → (𝑦𝐶 → (𝑧 = 𝐸𝑧 = 𝐹)))) → (((𝑥𝐴𝑦𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥𝐵𝑦𝐷) ∧ 𝑧 = 𝐹))) → ((((𝑥𝐴𝑦𝐶) ∧ 𝑧 = 𝐸) ∨ ((𝑥𝐵𝑦𝐷) ∧ 𝑧 = 𝐹)) ∨ (((𝑥𝐴𝑦𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥𝐵𝑦𝐷) ∧ 𝑧 = 𝐹))))
6564ord 862 . . . . . . . . . . . . . 14 (¬ ((((𝑥𝐴𝑥𝐵) ∧ (𝑦𝐶𝑦𝐷)) ∧ (𝑥𝐴 → (𝑦𝐶 → (𝑧 = 𝐸𝑧 = 𝐹)))) → (((𝑥𝐴𝑦𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥𝐵𝑦𝐷) ∧ 𝑧 = 𝐹))) → (¬ (((𝑥𝐴𝑦𝐶) ∧ 𝑧 = 𝐸) ∨ ((𝑥𝐵𝑦𝐷) ∧ 𝑧 = 𝐹)) → (((𝑥𝐴𝑦𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥𝐵𝑦𝐷) ∧ 𝑧 = 𝐹))))
6665a1dd 50 . . . . . . . . . . . . 13 (¬ ((((𝑥𝐴𝑥𝐵) ∧ (𝑦𝐶𝑦𝐷)) ∧ (𝑥𝐴 → (𝑦𝐶 → (𝑧 = 𝐸𝑧 = 𝐹)))) → (((𝑥𝐴𝑦𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥𝐵𝑦𝐷) ∧ 𝑧 = 𝐹))) → (¬ (((𝑥𝐴𝑦𝐶) ∧ 𝑧 = 𝐸) ∨ ((𝑥𝐵𝑦𝐷) ∧ 𝑧 = 𝐹)) → ((((𝑥𝐴𝑥𝐵) ∧ (𝑦𝐶𝑦𝐷)) ∧ (𝑥𝐴 → (𝑦𝐶 → (𝑧 = 𝐸𝑧 = 𝐹)))) → (((𝑥𝐴𝑦𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥𝐵𝑦𝐷) ∧ 𝑧 = 𝐹)))))
67 ax-1 6 . . . . . . . . . . . . 13 (¬ ((((𝑥𝐴𝑥𝐵) ∧ (𝑦𝐶𝑦𝐷)) ∧ (𝑥𝐴 → (𝑦𝐶 → (𝑧 = 𝐸𝑧 = 𝐹)))) → (((𝑥𝐴𝑦𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥𝐵𝑦𝐷) ∧ 𝑧 = 𝐹))) → (¬ (((𝑥𝐴𝑦𝐶) ∧ 𝑧 = 𝐸) ∨ ((𝑥𝐵𝑦𝐷) ∧ 𝑧 = 𝐹)) → ¬ ((((𝑥𝐴𝑥𝐵) ∧ (𝑦𝐶𝑦𝐷)) ∧ (𝑥𝐴 → (𝑦𝐶 → (𝑧 = 𝐸𝑧 = 𝐹)))) → (((𝑥𝐴𝑦𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥𝐵𝑦𝐷) ∧ 𝑧 = 𝐹)))))
6866, 67contrd 37701 . . . . . . . . . . . 12 (¬ ((((𝑥𝐴𝑥𝐵) ∧ (𝑦𝐶𝑦𝐷)) ∧ (𝑥𝐴 → (𝑦𝐶 → (𝑧 = 𝐸𝑧 = 𝐹)))) → (((𝑥𝐴𝑦𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥𝐵𝑦𝐷) ∧ 𝑧 = 𝐹))) → (((𝑥𝐴𝑦𝐶) ∧ 𝑧 = 𝐸) ∨ ((𝑥𝐵𝑦𝐷) ∧ 𝑧 = 𝐹)))
6968a1d 25 . . . . . . . . . . 11 (¬ ((((𝑥𝐴𝑥𝐵) ∧ (𝑦𝐶𝑦𝐷)) ∧ (𝑥𝐴 → (𝑦𝐶 → (𝑧 = 𝐸𝑧 = 𝐹)))) → (((𝑥𝐴𝑦𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥𝐵𝑦𝐷) ∧ 𝑧 = 𝐹))) → (¬ 𝑥𝐴 → (((𝑥𝐴𝑦𝐶) ∧ 𝑧 = 𝐸) ∨ ((𝑥𝐵𝑦𝐷) ∧ 𝑧 = 𝐹))))
7063, 69cnf1dd 37694 . . . . . . . . . 10 (¬ ((((𝑥𝐴𝑥𝐵) ∧ (𝑦𝐶𝑦𝐷)) ∧ (𝑥𝐴 → (𝑦𝐶 → (𝑧 = 𝐸𝑧 = 𝐹)))) → (((𝑥𝐴𝑦𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥𝐵𝑦𝐷) ∧ 𝑧 = 𝐹))) → (¬ 𝑥𝐴 → ((𝑥𝐵𝑦𝐷) ∧ 𝑧 = 𝐹)))
71 idd 24 . . . . . . . . . . . . 13 (¬ ((((𝑥𝐴𝑥𝐵) ∧ (𝑦𝐶𝑦𝐷)) ∧ (𝑥𝐴 → (𝑦𝐶 → (𝑧 = 𝐸𝑧 = 𝐹)))) → (((𝑥𝐴𝑦𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥𝐵𝑦𝐷) ∧ 𝑧 = 𝐹))) → (¬ 𝑥𝐴 → ¬ 𝑥𝐴))
72 tsan2 37746 . . . . . . . . . . . . . . . . . . 19 (¬ ((((𝑥𝐴𝑥𝐵) ∧ (𝑦𝐶𝑦𝐷)) ∧ (𝑥𝐴 → (𝑦𝐶 → (𝑧 = 𝐸𝑧 = 𝐹)))) → (((𝑥𝐴𝑦𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥𝐵𝑦𝐷) ∧ 𝑧 = 𝐹))) → ((𝑥𝐴𝑥𝐵) ∨ ¬ ((𝑥𝐴𝑥𝐵) ∧ (𝑦𝐶𝑦𝐷))))
7372ord 862 . . . . . . . . . . . . . . . . . 18 (¬ ((((𝑥𝐴𝑥𝐵) ∧ (𝑦𝐶𝑦𝐷)) ∧ (𝑥𝐴 → (𝑦𝐶 → (𝑧 = 𝐸𝑧 = 𝐹)))) → (((𝑥𝐴𝑦𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥𝐵𝑦𝐷) ∧ 𝑧 = 𝐹))) → (¬ (𝑥𝐴𝑥𝐵) → ¬ ((𝑥𝐴𝑥𝐵) ∧ (𝑦𝐶𝑦𝐷))))
74 tsan2 37746 . . . . . . . . . . . . . . . . . . 19 (¬ ((((𝑥𝐴𝑥𝐵) ∧ (𝑦𝐶𝑦𝐷)) ∧ (𝑥𝐴 → (𝑦𝐶 → (𝑧 = 𝐸𝑧 = 𝐹)))) → (((𝑥𝐴𝑦𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥𝐵𝑦𝐷) ∧ 𝑧 = 𝐹))) → (((𝑥𝐴𝑥𝐵) ∧ (𝑦𝐶𝑦𝐷)) ∨ ¬ (((𝑥𝐴𝑥𝐵) ∧ (𝑦𝐶𝑦𝐷)) ∧ (𝑥𝐴 → (𝑦𝐶 → (𝑧 = 𝐸𝑧 = 𝐹))))))
7574a1d 25 . . . . . . . . . . . . . . . . . 18 (¬ ((((𝑥𝐴𝑥𝐵) ∧ (𝑦𝐶𝑦𝐷)) ∧ (𝑥𝐴 → (𝑦𝐶 → (𝑧 = 𝐸𝑧 = 𝐹)))) → (((𝑥𝐴𝑦𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥𝐵𝑦𝐷) ∧ 𝑧 = 𝐹))) → (¬ (𝑥𝐴𝑥𝐵) → (((𝑥𝐴𝑥𝐵) ∧ (𝑦𝐶𝑦𝐷)) ∨ ¬ (((𝑥𝐴𝑥𝐵) ∧ (𝑦𝐶𝑦𝐷)) ∧ (𝑥𝐴 → (𝑦𝐶 → (𝑧 = 𝐸𝑧 = 𝐹)))))))
7673, 75cnf1dd 37694 . . . . . . . . . . . . . . . . 17 (¬ ((((𝑥𝐴𝑥𝐵) ∧ (𝑦𝐶𝑦𝐷)) ∧ (𝑥𝐴 → (𝑦𝐶 → (𝑧 = 𝐸𝑧 = 𝐹)))) → (((𝑥𝐴𝑦𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥𝐵𝑦𝐷) ∧ 𝑧 = 𝐹))) → (¬ (𝑥𝐴𝑥𝐵) → ¬ (((𝑥𝐴𝑥𝐵) ∧ (𝑦𝐶𝑦𝐷)) ∧ (𝑥𝐴 → (𝑦𝐶 → (𝑧 = 𝐸𝑧 = 𝐹))))))
77 tsim2 37735 . . . . . . . . . . . . . . . . . 18 (¬ ((((𝑥𝐴𝑥𝐵) ∧ (𝑦𝐶𝑦𝐷)) ∧ (𝑥𝐴 → (𝑦𝐶 → (𝑧 = 𝐸𝑧 = 𝐹)))) → (((𝑥𝐴𝑦𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥𝐵𝑦𝐷) ∧ 𝑧 = 𝐹))) → ((((𝑥𝐴𝑥𝐵) ∧ (𝑦𝐶𝑦𝐷)) ∧ (𝑥𝐴 → (𝑦𝐶 → (𝑧 = 𝐸𝑧 = 𝐹)))) ∨ ((((𝑥𝐴𝑥𝐵) ∧ (𝑦𝐶𝑦𝐷)) ∧ (𝑥𝐴 → (𝑦𝐶 → (𝑧 = 𝐸𝑧 = 𝐹)))) → (((𝑥𝐴𝑦𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥𝐵𝑦𝐷) ∧ 𝑧 = 𝐹)))))
7877a1d 25 . . . . . . . . . . . . . . . . 17 (¬ ((((𝑥𝐴𝑥𝐵) ∧ (𝑦𝐶𝑦𝐷)) ∧ (𝑥𝐴 → (𝑦𝐶 → (𝑧 = 𝐸𝑧 = 𝐹)))) → (((𝑥𝐴𝑦𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥𝐵𝑦𝐷) ∧ 𝑧 = 𝐹))) → (¬ (𝑥𝐴𝑥𝐵) → ((((𝑥𝐴𝑥𝐵) ∧ (𝑦𝐶𝑦𝐷)) ∧ (𝑥𝐴 → (𝑦𝐶 → (𝑧 = 𝐸𝑧 = 𝐹)))) ∨ ((((𝑥𝐴𝑥𝐵) ∧ (𝑦𝐶𝑦𝐷)) ∧ (𝑥𝐴 → (𝑦𝐶 → (𝑧 = 𝐸𝑧 = 𝐹)))) → (((𝑥𝐴𝑦𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥𝐵𝑦𝐷) ∧ 𝑧 = 𝐹))))))
7976, 78cnf1dd 37694 . . . . . . . . . . . . . . . 16 (¬ ((((𝑥𝐴𝑥𝐵) ∧ (𝑦𝐶𝑦𝐷)) ∧ (𝑥𝐴 → (𝑦𝐶 → (𝑧 = 𝐸𝑧 = 𝐹)))) → (((𝑥𝐴𝑦𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥𝐵𝑦𝐷) ∧ 𝑧 = 𝐹))) → (¬ (𝑥𝐴𝑥𝐵) → ((((𝑥𝐴𝑥𝐵) ∧ (𝑦𝐶𝑦𝐷)) ∧ (𝑥𝐴 → (𝑦𝐶 → (𝑧 = 𝐸𝑧 = 𝐹)))) → (((𝑥𝐴𝑦𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥𝐵𝑦𝐷) ∧ 𝑧 = 𝐹)))))
80 ax-1 6 . . . . . . . . . . . . . . . 16 (¬ ((((𝑥𝐴𝑥𝐵) ∧ (𝑦𝐶𝑦𝐷)) ∧ (𝑥𝐴 → (𝑦𝐶 → (𝑧 = 𝐸𝑧 = 𝐹)))) → (((𝑥𝐴𝑦𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥𝐵𝑦𝐷) ∧ 𝑧 = 𝐹))) → (¬ (𝑥𝐴𝑥𝐵) → ¬ ((((𝑥𝐴𝑥𝐵) ∧ (𝑦𝐶𝑦𝐷)) ∧ (𝑥𝐴 → (𝑦𝐶 → (𝑧 = 𝐸𝑧 = 𝐹)))) → (((𝑥𝐴𝑦𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥𝐵𝑦𝐷) ∧ 𝑧 = 𝐹)))))
8179, 80contrd 37701 . . . . . . . . . . . . . . 15 (¬ ((((𝑥𝐴𝑥𝐵) ∧ (𝑦𝐶𝑦𝐷)) ∧ (𝑥𝐴 → (𝑦𝐶 → (𝑧 = 𝐸𝑧 = 𝐹)))) → (((𝑥𝐴𝑦𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥𝐵𝑦𝐷) ∧ 𝑧 = 𝐹))) → (𝑥𝐴𝑥𝐵))
8281a1d 25 . . . . . . . . . . . . . 14 (¬ ((((𝑥𝐴𝑥𝐵) ∧ (𝑦𝐶𝑦𝐷)) ∧ (𝑥𝐴 → (𝑦𝐶 → (𝑧 = 𝐸𝑧 = 𝐹)))) → (((𝑥𝐴𝑦𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥𝐵𝑦𝐷) ∧ 𝑧 = 𝐹))) → (¬ 𝑥𝐴 → (𝑥𝐴𝑥𝐵)))
83 tsbi3 37739 . . . . . . . . . . . . . . 15 (¬ ((((𝑥𝐴𝑥𝐵) ∧ (𝑦𝐶𝑦𝐷)) ∧ (𝑥𝐴 → (𝑦𝐶 → (𝑧 = 𝐸𝑧 = 𝐹)))) → (((𝑥𝐴𝑦𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥𝐵𝑦𝐷) ∧ 𝑧 = 𝐹))) → ((𝑥𝐴 ∨ ¬ 𝑥𝐵) ∨ ¬ (𝑥𝐴𝑥𝐵)))
8483a1d 25 . . . . . . . . . . . . . 14 (¬ ((((𝑥𝐴𝑥𝐵) ∧ (𝑦𝐶𝑦𝐷)) ∧ (𝑥𝐴 → (𝑦𝐶 → (𝑧 = 𝐸𝑧 = 𝐹)))) → (((𝑥𝐴𝑦𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥𝐵𝑦𝐷) ∧ 𝑧 = 𝐹))) → (¬ 𝑥𝐴 → ((𝑥𝐴 ∨ ¬ 𝑥𝐵) ∨ ¬ (𝑥𝐴𝑥𝐵))))
8582, 84cnfn2dd 37697 . . . . . . . . . . . . 13 (¬ ((((𝑥𝐴𝑥𝐵) ∧ (𝑦𝐶𝑦𝐷)) ∧ (𝑥𝐴 → (𝑦𝐶 → (𝑧 = 𝐸𝑧 = 𝐹)))) → (((𝑥𝐴𝑦𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥𝐵𝑦𝐷) ∧ 𝑧 = 𝐹))) → (¬ 𝑥𝐴 → (𝑥𝐴 ∨ ¬ 𝑥𝐵)))
8671, 85cnf1dd 37694 . . . . . . . . . . . 12 (¬ ((((𝑥𝐴𝑥𝐵) ∧ (𝑦𝐶𝑦𝐷)) ∧ (𝑥𝐴 → (𝑦𝐶 → (𝑧 = 𝐸𝑧 = 𝐹)))) → (((𝑥𝐴𝑦𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥𝐵𝑦𝐷) ∧ 𝑧 = 𝐹))) → (¬ 𝑥𝐴 → ¬ 𝑥𝐵))
87 tsan2 37746 . . . . . . . . . . . . 13 (¬ ((((𝑥𝐴𝑥𝐵) ∧ (𝑦𝐶𝑦𝐷)) ∧ (𝑥𝐴 → (𝑦𝐶 → (𝑧 = 𝐸𝑧 = 𝐹)))) → (((𝑥𝐴𝑦𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥𝐵𝑦𝐷) ∧ 𝑧 = 𝐹))) → (𝑥𝐵 ∨ ¬ (𝑥𝐵𝑦𝐷)))
8887a1d 25 . . . . . . . . . . . 12 (¬ ((((𝑥𝐴𝑥𝐵) ∧ (𝑦𝐶𝑦𝐷)) ∧ (𝑥𝐴 → (𝑦𝐶 → (𝑧 = 𝐸𝑧 = 𝐹)))) → (((𝑥𝐴𝑦𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥𝐵𝑦𝐷) ∧ 𝑧 = 𝐹))) → (¬ 𝑥𝐴 → (𝑥𝐵 ∨ ¬ (𝑥𝐵𝑦𝐷))))
8986, 88cnf1dd 37694 . . . . . . . . . . 11 (¬ ((((𝑥𝐴𝑥𝐵) ∧ (𝑦𝐶𝑦𝐷)) ∧ (𝑥𝐴 → (𝑦𝐶 → (𝑧 = 𝐸𝑧 = 𝐹)))) → (((𝑥𝐴𝑦𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥𝐵𝑦𝐷) ∧ 𝑧 = 𝐹))) → (¬ 𝑥𝐴 → ¬ (𝑥𝐵𝑦𝐷)))
90 tsan2 37746 . . . . . . . . . . . 12 (¬ ((((𝑥𝐴𝑥𝐵) ∧ (𝑦𝐶𝑦𝐷)) ∧ (𝑥𝐴 → (𝑦𝐶 → (𝑧 = 𝐸𝑧 = 𝐹)))) → (((𝑥𝐴𝑦𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥𝐵𝑦𝐷) ∧ 𝑧 = 𝐹))) → ((𝑥𝐵𝑦𝐷) ∨ ¬ ((𝑥𝐵𝑦𝐷) ∧ 𝑧 = 𝐹)))
9190a1d 25 . . . . . . . . . . 11 (¬ ((((𝑥𝐴𝑥𝐵) ∧ (𝑦𝐶𝑦𝐷)) ∧ (𝑥𝐴 → (𝑦𝐶 → (𝑧 = 𝐸𝑧 = 𝐹)))) → (((𝑥𝐴𝑦𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥𝐵𝑦𝐷) ∧ 𝑧 = 𝐹))) → (¬ 𝑥𝐴 → ((𝑥𝐵𝑦𝐷) ∨ ¬ ((𝑥𝐵𝑦𝐷) ∧ 𝑧 = 𝐹))))
9289, 91cnf1dd 37694 . . . . . . . . . 10 (¬ ((((𝑥𝐴𝑥𝐵) ∧ (𝑦𝐶𝑦𝐷)) ∧ (𝑥𝐴 → (𝑦𝐶 → (𝑧 = 𝐸𝑧 = 𝐹)))) → (((𝑥𝐴𝑦𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥𝐵𝑦𝐷) ∧ 𝑧 = 𝐹))) → (¬ 𝑥𝐴 → ¬ ((𝑥𝐵𝑦𝐷) ∧ 𝑧 = 𝐹)))
9370, 92contrd 37701 . . . . . . . . 9 (¬ ((((𝑥𝐴𝑥𝐵) ∧ (𝑦𝐶𝑦𝐷)) ∧ (𝑥𝐴 → (𝑦𝐶 → (𝑧 = 𝐸𝑧 = 𝐹)))) → (((𝑥𝐴𝑦𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥𝐵𝑦𝐷) ∧ 𝑧 = 𝐹))) → 𝑥𝐴)
9493a1d 25 . . . . . . . 8 (¬ ((((𝑥𝐴𝑥𝐵) ∧ (𝑦𝐶𝑦𝐷)) ∧ (𝑥𝐴 → (𝑦𝐶 → (𝑧 = 𝐸𝑧 = 𝐹)))) → (((𝑥𝐴𝑦𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥𝐵𝑦𝐷) ∧ 𝑧 = 𝐹))) → (¬ ⊥ → 𝑥𝐴))
95 ax-1 6 . . . . . . . . . 10 (¬ ((((𝑥𝐴𝑥𝐵) ∧ (𝑦𝐶𝑦𝐷)) ∧ (𝑥𝐴 → (𝑦𝐶 → (𝑧 = 𝐸𝑧 = 𝐹)))) → (((𝑥𝐴𝑦𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥𝐵𝑦𝐷) ∧ 𝑧 = 𝐹))) → (¬ ⊥ → ¬ ((((𝑥𝐴𝑥𝐵) ∧ (𝑦𝐶𝑦𝐷)) ∧ (𝑥𝐴 → (𝑦𝐶 → (𝑧 = 𝐸𝑧 = 𝐹)))) → (((𝑥𝐴𝑦𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥𝐵𝑦𝐷) ∧ 𝑧 = 𝐹)))))
9677a1d 25 . . . . . . . . . 10 (¬ ((((𝑥𝐴𝑥𝐵) ∧ (𝑦𝐶𝑦𝐷)) ∧ (𝑥𝐴 → (𝑦𝐶 → (𝑧 = 𝐸𝑧 = 𝐹)))) → (((𝑥𝐴𝑦𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥𝐵𝑦𝐷) ∧ 𝑧 = 𝐹))) → (¬ ⊥ → ((((𝑥𝐴𝑥𝐵) ∧ (𝑦𝐶𝑦𝐷)) ∧ (𝑥𝐴 → (𝑦𝐶 → (𝑧 = 𝐸𝑧 = 𝐹)))) ∨ ((((𝑥𝐴𝑥𝐵) ∧ (𝑦𝐶𝑦𝐷)) ∧ (𝑥𝐴 → (𝑦𝐶 → (𝑧 = 𝐸𝑧 = 𝐹)))) → (((𝑥𝐴𝑦𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥𝐵𝑦𝐷) ∧ 𝑧 = 𝐹))))))
9795, 96cnf2dd 37695 . . . . . . . . 9 (¬ ((((𝑥𝐴𝑥𝐵) ∧ (𝑦𝐶𝑦𝐷)) ∧ (𝑥𝐴 → (𝑦𝐶 → (𝑧 = 𝐸𝑧 = 𝐹)))) → (((𝑥𝐴𝑦𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥𝐵𝑦𝐷) ∧ 𝑧 = 𝐹))) → (¬ ⊥ → (((𝑥𝐴𝑥𝐵) ∧ (𝑦𝐶𝑦𝐷)) ∧ (𝑥𝐴 → (𝑦𝐶 → (𝑧 = 𝐸𝑧 = 𝐹))))))
98 tsan3 37747 . . . . . . . . . 10 (¬ ((((𝑥𝐴𝑥𝐵) ∧ (𝑦𝐶𝑦𝐷)) ∧ (𝑥𝐴 → (𝑦𝐶 → (𝑧 = 𝐸𝑧 = 𝐹)))) → (((𝑥𝐴𝑦𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥𝐵𝑦𝐷) ∧ 𝑧 = 𝐹))) → ((𝑥𝐴 → (𝑦𝐶 → (𝑧 = 𝐸𝑧 = 𝐹))) ∨ ¬ (((𝑥𝐴𝑥𝐵) ∧ (𝑦𝐶𝑦𝐷)) ∧ (𝑥𝐴 → (𝑦𝐶 → (𝑧 = 𝐸𝑧 = 𝐹))))))
9998a1d 25 . . . . . . . . 9 (¬ ((((𝑥𝐴𝑥𝐵) ∧ (𝑦𝐶𝑦𝐷)) ∧ (𝑥𝐴 → (𝑦𝐶 → (𝑧 = 𝐸𝑧 = 𝐹)))) → (((𝑥𝐴𝑦𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥𝐵𝑦𝐷) ∧ 𝑧 = 𝐹))) → (¬ ⊥ → ((𝑥𝐴 → (𝑦𝐶 → (𝑧 = 𝐸𝑧 = 𝐹))) ∨ ¬ (((𝑥𝐴𝑥𝐵) ∧ (𝑦𝐶𝑦𝐷)) ∧ (𝑥𝐴 → (𝑦𝐶 → (𝑧 = 𝐸𝑧 = 𝐹)))))))
10097, 99cnfn2dd 37697 . . . . . . . 8 (¬ ((((𝑥𝐴𝑥𝐵) ∧ (𝑦𝐶𝑦𝐷)) ∧ (𝑥𝐴 → (𝑦𝐶 → (𝑧 = 𝐸𝑧 = 𝐹)))) → (((𝑥𝐴𝑦𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥𝐵𝑦𝐷) ∧ 𝑧 = 𝐹))) → (¬ ⊥ → (𝑥𝐴 → (𝑦𝐶 → (𝑧 = 𝐸𝑧 = 𝐹)))))
10194, 100mpdd 43 . . . . . . 7 (¬ ((((𝑥𝐴𝑥𝐵) ∧ (𝑦𝐶𝑦𝐷)) ∧ (𝑥𝐴 → (𝑦𝐶 → (𝑧 = 𝐸𝑧 = 𝐹)))) → (((𝑥𝐴𝑦𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥𝐵𝑦𝐷) ∧ 𝑧 = 𝐹))) → (¬ ⊥ → (𝑦𝐶 → (𝑧 = 𝐸𝑧 = 𝐹))))
102 notnotr 130 . . . . . . . . . . . . . . . . . 18 (¬ ¬ ((𝑥𝐵𝑦𝐷) ∧ 𝑧 = 𝐹) → ((𝑥𝐵𝑦𝐷) ∧ 𝑧 = 𝐹))
103102a1i 11 . . . . . . . . . . . . . . . . 17 (¬ ((((𝑥𝐴𝑥𝐵) ∧ (𝑦𝐶𝑦𝐷)) ∧ (𝑥𝐴 → (𝑦𝐶 → (𝑧 = 𝐸𝑧 = 𝐹)))) → (((𝑥𝐴𝑦𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥𝐵𝑦𝐷) ∧ 𝑧 = 𝐹))) → (¬ ¬ ((𝑥𝐵𝑦𝐷) ∧ 𝑧 = 𝐹) → ((𝑥𝐵𝑦𝐷) ∧ 𝑧 = 𝐹)))
10490a1d 25 . . . . . . . . . . . . . . . . 17 (¬ ((((𝑥𝐴𝑥𝐵) ∧ (𝑦𝐶𝑦𝐷)) ∧ (𝑥𝐴 → (𝑦𝐶 → (𝑧 = 𝐸𝑧 = 𝐹)))) → (((𝑥𝐴𝑦𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥𝐵𝑦𝐷) ∧ 𝑧 = 𝐹))) → (¬ ¬ ((𝑥𝐵𝑦𝐷) ∧ 𝑧 = 𝐹) → ((𝑥𝐵𝑦𝐷) ∨ ¬ ((𝑥𝐵𝑦𝐷) ∧ 𝑧 = 𝐹))))
105103, 104cnfn2dd 37697 . . . . . . . . . . . . . . . 16 (¬ ((((𝑥𝐴𝑥𝐵) ∧ (𝑦𝐶𝑦𝐷)) ∧ (𝑥𝐴 → (𝑦𝐶 → (𝑧 = 𝐸𝑧 = 𝐹)))) → (((𝑥𝐴𝑦𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥𝐵𝑦𝐷) ∧ 𝑧 = 𝐹))) → (¬ ¬ ((𝑥𝐵𝑦𝐷) ∧ 𝑧 = 𝐹) → (𝑥𝐵𝑦𝐷)))
106 tsan3 37747 . . . . . . . . . . . . . . . . 17 (¬ ((((𝑥𝐴𝑥𝐵) ∧ (𝑦𝐶𝑦𝐷)) ∧ (𝑥𝐴 → (𝑦𝐶 → (𝑧 = 𝐸𝑧 = 𝐹)))) → (((𝑥𝐴𝑦𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥𝐵𝑦𝐷) ∧ 𝑧 = 𝐹))) → (𝑦𝐷 ∨ ¬ (𝑥𝐵𝑦𝐷)))
107106a1d 25 . . . . . . . . . . . . . . . 16 (¬ ((((𝑥𝐴𝑥𝐵) ∧ (𝑦𝐶𝑦𝐷)) ∧ (𝑥𝐴 → (𝑦𝐶 → (𝑧 = 𝐸𝑧 = 𝐹)))) → (((𝑥𝐴𝑦𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥𝐵𝑦𝐷) ∧ 𝑧 = 𝐹))) → (¬ ¬ ((𝑥𝐵𝑦𝐷) ∧ 𝑧 = 𝐹) → (𝑦𝐷 ∨ ¬ (𝑥𝐵𝑦𝐷))))
108105, 107cnfn2dd 37697 . . . . . . . . . . . . . . 15 (¬ ((((𝑥𝐴𝑥𝐵) ∧ (𝑦𝐶𝑦𝐷)) ∧ (𝑥𝐴 → (𝑦𝐶 → (𝑧 = 𝐸𝑧 = 𝐹)))) → (((𝑥𝐴𝑦𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥𝐵𝑦𝐷) ∧ 𝑧 = 𝐹))) → (¬ ¬ ((𝑥𝐵𝑦𝐷) ∧ 𝑧 = 𝐹) → 𝑦𝐷))
109 tsan3 37747 . . . . . . . . . . . . . . . . . . 19 (¬ ((((𝑥𝐴𝑥𝐵) ∧ (𝑦𝐶𝑦𝐷)) ∧ (𝑥𝐴 → (𝑦𝐶 → (𝑧 = 𝐸𝑧 = 𝐹)))) → (((𝑥𝐴𝑦𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥𝐵𝑦𝐷) ∧ 𝑧 = 𝐹))) → ((𝑦𝐶𝑦𝐷) ∨ ¬ ((𝑥𝐴𝑥𝐵) ∧ (𝑦𝐶𝑦𝐷))))
110109ord 862 . . . . . . . . . . . . . . . . . 18 (¬ ((((𝑥𝐴𝑥𝐵) ∧ (𝑦𝐶𝑦𝐷)) ∧ (𝑥𝐴 → (𝑦𝐶 → (𝑧 = 𝐸𝑧 = 𝐹)))) → (((𝑥𝐴𝑦𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥𝐵𝑦𝐷) ∧ 𝑧 = 𝐹))) → (¬ (𝑦𝐶𝑦𝐷) → ¬ ((𝑥𝐴𝑥𝐵) ∧ (𝑦𝐶𝑦𝐷))))
11174a1d 25 . . . . . . . . . . . . . . . . . 18 (¬ ((((𝑥𝐴𝑥𝐵) ∧ (𝑦𝐶𝑦𝐷)) ∧ (𝑥𝐴 → (𝑦𝐶 → (𝑧 = 𝐸𝑧 = 𝐹)))) → (((𝑥𝐴𝑦𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥𝐵𝑦𝐷) ∧ 𝑧 = 𝐹))) → (¬ (𝑦𝐶𝑦𝐷) → (((𝑥𝐴𝑥𝐵) ∧ (𝑦𝐶𝑦𝐷)) ∨ ¬ (((𝑥𝐴𝑥𝐵) ∧ (𝑦𝐶𝑦𝐷)) ∧ (𝑥𝐴 → (𝑦𝐶 → (𝑧 = 𝐸𝑧 = 𝐹)))))))
112110, 111cnf1dd 37694 . . . . . . . . . . . . . . . . 17 (¬ ((((𝑥𝐴𝑥𝐵) ∧ (𝑦𝐶𝑦𝐷)) ∧ (𝑥𝐴 → (𝑦𝐶 → (𝑧 = 𝐸𝑧 = 𝐹)))) → (((𝑥𝐴𝑦𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥𝐵𝑦𝐷) ∧ 𝑧 = 𝐹))) → (¬ (𝑦𝐶𝑦𝐷) → ¬ (((𝑥𝐴𝑥𝐵) ∧ (𝑦𝐶𝑦𝐷)) ∧ (𝑥𝐴 → (𝑦𝐶 → (𝑧 = 𝐸𝑧 = 𝐹))))))
11377a1d 25 . . . . . . . . . . . . . . . . 17 (¬ ((((𝑥𝐴𝑥𝐵) ∧ (𝑦𝐶𝑦𝐷)) ∧ (𝑥𝐴 → (𝑦𝐶 → (𝑧 = 𝐸𝑧 = 𝐹)))) → (((𝑥𝐴𝑦𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥𝐵𝑦𝐷) ∧ 𝑧 = 𝐹))) → (¬ (𝑦𝐶𝑦𝐷) → ((((𝑥𝐴𝑥𝐵) ∧ (𝑦𝐶𝑦𝐷)) ∧ (𝑥𝐴 → (𝑦𝐶 → (𝑧 = 𝐸𝑧 = 𝐹)))) ∨ ((((𝑥𝐴𝑥𝐵) ∧ (𝑦𝐶𝑦𝐷)) ∧ (𝑥𝐴 → (𝑦𝐶 → (𝑧 = 𝐸𝑧 = 𝐹)))) → (((𝑥𝐴𝑦𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥𝐵𝑦𝐷) ∧ 𝑧 = 𝐹))))))
114112, 113cnf1dd 37694 . . . . . . . . . . . . . . . 16 (¬ ((((𝑥𝐴𝑥𝐵) ∧ (𝑦𝐶𝑦𝐷)) ∧ (𝑥𝐴 → (𝑦𝐶 → (𝑧 = 𝐸𝑧 = 𝐹)))) → (((𝑥𝐴𝑦𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥𝐵𝑦𝐷) ∧ 𝑧 = 𝐹))) → (¬ (𝑦𝐶𝑦𝐷) → ((((𝑥𝐴𝑥𝐵) ∧ (𝑦𝐶𝑦𝐷)) ∧ (𝑥𝐴 → (𝑦𝐶 → (𝑧 = 𝐸𝑧 = 𝐹)))) → (((𝑥𝐴𝑦𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥𝐵𝑦𝐷) ∧ 𝑧 = 𝐹)))))
115 ax-1 6 . . . . . . . . . . . . . . . 16 (¬ ((((𝑥𝐴𝑥𝐵) ∧ (𝑦𝐶𝑦𝐷)) ∧ (𝑥𝐴 → (𝑦𝐶 → (𝑧 = 𝐸𝑧 = 𝐹)))) → (((𝑥𝐴𝑦𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥𝐵𝑦𝐷) ∧ 𝑧 = 𝐹))) → (¬ (𝑦𝐶𝑦𝐷) → ¬ ((((𝑥𝐴𝑥𝐵) ∧ (𝑦𝐶𝑦𝐷)) ∧ (𝑥𝐴 → (𝑦𝐶 → (𝑧 = 𝐸𝑧 = 𝐹)))) → (((𝑥𝐴𝑦𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥𝐵𝑦𝐷) ∧ 𝑧 = 𝐹)))))
116114, 115contrd 37701 . . . . . . . . . . . . . . 15 (¬ ((((𝑥𝐴𝑥𝐵) ∧ (𝑦𝐶𝑦𝐷)) ∧ (𝑥𝐴 → (𝑦𝐶 → (𝑧 = 𝐸𝑧 = 𝐹)))) → (((𝑥𝐴𝑦𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥𝐵𝑦𝐷) ∧ 𝑧 = 𝐹))) → (𝑦𝐶𝑦𝐷))
117108, 116sylibrd 258 . . . . . . . . . . . . . 14 (¬ ((((𝑥𝐴𝑥𝐵) ∧ (𝑦𝐶𝑦𝐷)) ∧ (𝑥𝐴 → (𝑦𝐶 → (𝑧 = 𝐸𝑧 = 𝐹)))) → (((𝑥𝐴𝑦𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥𝐵𝑦𝐷) ∧ 𝑧 = 𝐹))) → (¬ ¬ ((𝑥𝐵𝑦𝐷) ∧ 𝑧 = 𝐹) → 𝑦𝐶))
11893a1d 25 . . . . . . . . . . . . . . 15 (¬ ((((𝑥𝐴𝑥𝐵) ∧ (𝑦𝐶𝑦𝐷)) ∧ (𝑥𝐴 → (𝑦𝐶 → (𝑧 = 𝐸𝑧 = 𝐹)))) → (((𝑥𝐴𝑦𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥𝐵𝑦𝐷) ∧ 𝑧 = 𝐹))) → (¬ ¬ ((𝑥𝐵𝑦𝐷) ∧ 𝑧 = 𝐹) → 𝑥𝐴))
119 ax-1 6 . . . . . . . . . . . . . . . . 17 (¬ ((((𝑥𝐴𝑥𝐵) ∧ (𝑦𝐶𝑦𝐷)) ∧ (𝑥𝐴 → (𝑦𝐶 → (𝑧 = 𝐸𝑧 = 𝐹)))) → (((𝑥𝐴𝑦𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥𝐵𝑦𝐷) ∧ 𝑧 = 𝐹))) → (¬ ¬ ((𝑥𝐵𝑦𝐷) ∧ 𝑧 = 𝐹) → ¬ ((((𝑥𝐴𝑥𝐵) ∧ (𝑦𝐶𝑦𝐷)) ∧ (𝑥𝐴 → (𝑦𝐶 → (𝑧 = 𝐸𝑧 = 𝐹)))) → (((𝑥𝐴𝑦𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥𝐵𝑦𝐷) ∧ 𝑧 = 𝐹)))))
12077a1d 25 . . . . . . . . . . . . . . . . 17 (¬ ((((𝑥𝐴𝑥𝐵) ∧ (𝑦𝐶𝑦𝐷)) ∧ (𝑥𝐴 → (𝑦𝐶 → (𝑧 = 𝐸𝑧 = 𝐹)))) → (((𝑥𝐴𝑦𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥𝐵𝑦𝐷) ∧ 𝑧 = 𝐹))) → (¬ ¬ ((𝑥𝐵𝑦𝐷) ∧ 𝑧 = 𝐹) → ((((𝑥𝐴𝑥𝐵) ∧ (𝑦𝐶𝑦𝐷)) ∧ (𝑥𝐴 → (𝑦𝐶 → (𝑧 = 𝐸𝑧 = 𝐹)))) ∨ ((((𝑥𝐴𝑥𝐵) ∧ (𝑦𝐶𝑦𝐷)) ∧ (𝑥𝐴 → (𝑦𝐶 → (𝑧 = 𝐸𝑧 = 𝐹)))) → (((𝑥𝐴𝑦𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥𝐵𝑦𝐷) ∧ 𝑧 = 𝐹))))))
121119, 120cnf2dd 37695 . . . . . . . . . . . . . . . 16 (¬ ((((𝑥𝐴𝑥𝐵) ∧ (𝑦𝐶𝑦𝐷)) ∧ (𝑥𝐴 → (𝑦𝐶 → (𝑧 = 𝐸𝑧 = 𝐹)))) → (((𝑥𝐴𝑦𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥𝐵𝑦𝐷) ∧ 𝑧 = 𝐹))) → (¬ ¬ ((𝑥𝐵𝑦𝐷) ∧ 𝑧 = 𝐹) → (((𝑥𝐴𝑥𝐵) ∧ (𝑦𝐶𝑦𝐷)) ∧ (𝑥𝐴 → (𝑦𝐶 → (𝑧 = 𝐸𝑧 = 𝐹))))))
12298a1d 25 . . . . . . . . . . . . . . . 16 (¬ ((((𝑥𝐴𝑥𝐵) ∧ (𝑦𝐶𝑦𝐷)) ∧ (𝑥𝐴 → (𝑦𝐶 → (𝑧 = 𝐸𝑧 = 𝐹)))) → (((𝑥𝐴𝑦𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥𝐵𝑦𝐷) ∧ 𝑧 = 𝐹))) → (¬ ¬ ((𝑥𝐵𝑦𝐷) ∧ 𝑧 = 𝐹) → ((𝑥𝐴 → (𝑦𝐶 → (𝑧 = 𝐸𝑧 = 𝐹))) ∨ ¬ (((𝑥𝐴𝑥𝐵) ∧ (𝑦𝐶𝑦𝐷)) ∧ (𝑥𝐴 → (𝑦𝐶 → (𝑧 = 𝐸𝑧 = 𝐹)))))))
123121, 122cnfn2dd 37697 . . . . . . . . . . . . . . 15 (¬ ((((𝑥𝐴𝑥𝐵) ∧ (𝑦𝐶𝑦𝐷)) ∧ (𝑥𝐴 → (𝑦𝐶 → (𝑧 = 𝐸𝑧 = 𝐹)))) → (((𝑥𝐴𝑦𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥𝐵𝑦𝐷) ∧ 𝑧 = 𝐹))) → (¬ ¬ ((𝑥𝐵𝑦𝐷) ∧ 𝑧 = 𝐹) → (𝑥𝐴 → (𝑦𝐶 → (𝑧 = 𝐸𝑧 = 𝐹)))))
124118, 123mpdd 43 . . . . . . . . . . . . . 14 (¬ ((((𝑥𝐴𝑥𝐵) ∧ (𝑦𝐶𝑦𝐷)) ∧ (𝑥𝐴 → (𝑦𝐶 → (𝑧 = 𝐸𝑧 = 𝐹)))) → (((𝑥𝐴𝑦𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥𝐵𝑦𝐷) ∧ 𝑧 = 𝐹))) → (¬ ¬ ((𝑥𝐵𝑦𝐷) ∧ 𝑧 = 𝐹) → (𝑦𝐶 → (𝑧 = 𝐸𝑧 = 𝐹))))
125117, 124mpdd 43 . . . . . . . . . . . . 13 (¬ ((((𝑥𝐴𝑥𝐵) ∧ (𝑦𝐶𝑦𝐷)) ∧ (𝑥𝐴 → (𝑦𝐶 → (𝑧 = 𝐸𝑧 = 𝐹)))) → (((𝑥𝐴𝑦𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥𝐵𝑦𝐷) ∧ 𝑧 = 𝐹))) → (¬ ¬ ((𝑥𝐵𝑦𝐷) ∧ 𝑧 = 𝐹) → (𝑧 = 𝐸𝑧 = 𝐹)))
126118, 117jcad 511 . . . . . . . . . . . . . . 15 (¬ ((((𝑥𝐴𝑥𝐵) ∧ (𝑦𝐶𝑦𝐷)) ∧ (𝑥𝐴 → (𝑦𝐶 → (𝑧 = 𝐸𝑧 = 𝐹)))) → (((𝑥𝐴𝑦𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥𝐵𝑦𝐷) ∧ 𝑧 = 𝐹))) → (¬ ¬ ((𝑥𝐵𝑦𝐷) ∧ 𝑧 = 𝐹) → (𝑥𝐴𝑦𝐶)))
127 tsim3 37736 . . . . . . . . . . . . . . . . . . . 20 (¬ ((((𝑥𝐴𝑥𝐵) ∧ (𝑦𝐶𝑦𝐷)) ∧ (𝑥𝐴 → (𝑦𝐶 → (𝑧 = 𝐸𝑧 = 𝐹)))) → (((𝑥𝐴𝑦𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥𝐵𝑦𝐷) ∧ 𝑧 = 𝐹))) → (¬ (((𝑥𝐴𝑦𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥𝐵𝑦𝐷) ∧ 𝑧 = 𝐹)) ∨ ((((𝑥𝐴𝑥𝐵) ∧ (𝑦𝐶𝑦𝐷)) ∧ (𝑥𝐴 → (𝑦𝐶 → (𝑧 = 𝐸𝑧 = 𝐹)))) → (((𝑥𝐴𝑦𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥𝐵𝑦𝐷) ∧ 𝑧 = 𝐹)))))
128127a1d 25 . . . . . . . . . . . . . . . . . . 19 (¬ ((((𝑥𝐴𝑥𝐵) ∧ (𝑦𝐶𝑦𝐷)) ∧ (𝑥𝐴 → (𝑦𝐶 → (𝑧 = 𝐸𝑧 = 𝐹)))) → (((𝑥𝐴𝑦𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥𝐵𝑦𝐷) ∧ 𝑧 = 𝐹))) → (¬ ¬ ((𝑥𝐵𝑦𝐷) ∧ 𝑧 = 𝐹) → (¬ (((𝑥𝐴𝑦𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥𝐵𝑦𝐷) ∧ 𝑧 = 𝐹)) ∨ ((((𝑥𝐴𝑥𝐵) ∧ (𝑦𝐶𝑦𝐷)) ∧ (𝑥𝐴 → (𝑦𝐶 → (𝑧 = 𝐸𝑧 = 𝐹)))) → (((𝑥𝐴𝑦𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥𝐵𝑦𝐷) ∧ 𝑧 = 𝐹))))))
129119, 128cnf2dd 37695 . . . . . . . . . . . . . . . . . 18 (¬ ((((𝑥𝐴𝑥𝐵) ∧ (𝑦𝐶𝑦𝐷)) ∧ (𝑥𝐴 → (𝑦𝐶 → (𝑧 = 𝐸𝑧 = 𝐹)))) → (((𝑥𝐴𝑦𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥𝐵𝑦𝐷) ∧ 𝑧 = 𝐹))) → (¬ ¬ ((𝑥𝐵𝑦𝐷) ∧ 𝑧 = 𝐹) → ¬ (((𝑥𝐴𝑦𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥𝐵𝑦𝐷) ∧ 𝑧 = 𝐹))))
130 tsbi1 37737 . . . . . . . . . . . . . . . . . . 19 (¬ ((((𝑥𝐴𝑥𝐵) ∧ (𝑦𝐶𝑦𝐷)) ∧ (𝑥𝐴 → (𝑦𝐶 → (𝑧 = 𝐸𝑧 = 𝐹)))) → (((𝑥𝐴𝑦𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥𝐵𝑦𝐷) ∧ 𝑧 = 𝐹))) → ((¬ ((𝑥𝐴𝑦𝐶) ∧ 𝑧 = 𝐸) ∨ ¬ ((𝑥𝐵𝑦𝐷) ∧ 𝑧 = 𝐹)) ∨ (((𝑥𝐴𝑦𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥𝐵𝑦𝐷) ∧ 𝑧 = 𝐹))))
131130a1d 25 . . . . . . . . . . . . . . . . . 18 (¬ ((((𝑥𝐴𝑥𝐵) ∧ (𝑦𝐶𝑦𝐷)) ∧ (𝑥𝐴 → (𝑦𝐶 → (𝑧 = 𝐸𝑧 = 𝐹)))) → (((𝑥𝐴𝑦𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥𝐵𝑦𝐷) ∧ 𝑧 = 𝐹))) → (¬ ¬ ((𝑥𝐵𝑦𝐷) ∧ 𝑧 = 𝐹) → ((¬ ((𝑥𝐴𝑦𝐶) ∧ 𝑧 = 𝐸) ∨ ¬ ((𝑥𝐵𝑦𝐷) ∧ 𝑧 = 𝐹)) ∨ (((𝑥𝐴𝑦𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥𝐵𝑦𝐷) ∧ 𝑧 = 𝐹)))))
132129, 131cnf2dd 37695 . . . . . . . . . . . . . . . . 17 (¬ ((((𝑥𝐴𝑥𝐵) ∧ (𝑦𝐶𝑦𝐷)) ∧ (𝑥𝐴 → (𝑦𝐶 → (𝑧 = 𝐸𝑧 = 𝐹)))) → (((𝑥𝐴𝑦𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥𝐵𝑦𝐷) ∧ 𝑧 = 𝐹))) → (¬ ¬ ((𝑥𝐵𝑦𝐷) ∧ 𝑧 = 𝐹) → (¬ ((𝑥𝐴𝑦𝐶) ∧ 𝑧 = 𝐸) ∨ ¬ ((𝑥𝐵𝑦𝐷) ∧ 𝑧 = 𝐹))))
133103, 132cnfn2dd 37697 . . . . . . . . . . . . . . . 16 (¬ ((((𝑥𝐴𝑥𝐵) ∧ (𝑦𝐶𝑦𝐷)) ∧ (𝑥𝐴 → (𝑦𝐶 → (𝑧 = 𝐸𝑧 = 𝐹)))) → (((𝑥𝐴𝑦𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥𝐵𝑦𝐷) ∧ 𝑧 = 𝐹))) → (¬ ¬ ((𝑥𝐵𝑦𝐷) ∧ 𝑧 = 𝐹) → ¬ ((𝑥𝐴𝑦𝐶) ∧ 𝑧 = 𝐸)))
134 tsan1 37745 . . . . . . . . . . . . . . . . 17 (¬ ((((𝑥𝐴𝑥𝐵) ∧ (𝑦𝐶𝑦𝐷)) ∧ (𝑥𝐴 → (𝑦𝐶 → (𝑧 = 𝐸𝑧 = 𝐹)))) → (((𝑥𝐴𝑦𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥𝐵𝑦𝐷) ∧ 𝑧 = 𝐹))) → ((¬ (𝑥𝐴𝑦𝐶) ∨ ¬ 𝑧 = 𝐸) ∨ ((𝑥𝐴𝑦𝐶) ∧ 𝑧 = 𝐸)))
135134a1d 25 . . . . . . . . . . . . . . . 16 (¬ ((((𝑥𝐴𝑥𝐵) ∧ (𝑦𝐶𝑦𝐷)) ∧ (𝑥𝐴 → (𝑦𝐶 → (𝑧 = 𝐸𝑧 = 𝐹)))) → (((𝑥𝐴𝑦𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥𝐵𝑦𝐷) ∧ 𝑧 = 𝐹))) → (¬ ¬ ((𝑥𝐵𝑦𝐷) ∧ 𝑧 = 𝐹) → ((¬ (𝑥𝐴𝑦𝐶) ∨ ¬ 𝑧 = 𝐸) ∨ ((𝑥𝐴𝑦𝐶) ∧ 𝑧 = 𝐸))))
136133, 135cnf2dd 37695 . . . . . . . . . . . . . . 15 (¬ ((((𝑥𝐴𝑥𝐵) ∧ (𝑦𝐶𝑦𝐷)) ∧ (𝑥𝐴 → (𝑦𝐶 → (𝑧 = 𝐸𝑧 = 𝐹)))) → (((𝑥𝐴𝑦𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥𝐵𝑦𝐷) ∧ 𝑧 = 𝐹))) → (¬ ¬ ((𝑥𝐵𝑦𝐷) ∧ 𝑧 = 𝐹) → (¬ (𝑥𝐴𝑦𝐶) ∨ ¬ 𝑧 = 𝐸)))
137126, 136cnfn1dd 37696 . . . . . . . . . . . . . 14 (¬ ((((𝑥𝐴𝑥𝐵) ∧ (𝑦𝐶𝑦𝐷)) ∧ (𝑥𝐴 → (𝑦𝐶 → (𝑧 = 𝐸𝑧 = 𝐹)))) → (((𝑥𝐴𝑦𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥𝐵𝑦𝐷) ∧ 𝑧 = 𝐹))) → (¬ ¬ ((𝑥𝐵𝑦𝐷) ∧ 𝑧 = 𝐹) → ¬ 𝑧 = 𝐸))
138 tsan3 37747 . . . . . . . . . . . . . . . . 17 (¬ ((((𝑥𝐴𝑥𝐵) ∧ (𝑦𝐶𝑦𝐷)) ∧ (𝑥𝐴 → (𝑦𝐶 → (𝑧 = 𝐸𝑧 = 𝐹)))) → (((𝑥𝐴𝑦𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥𝐵𝑦𝐷) ∧ 𝑧 = 𝐹))) → (𝑧 = 𝐹 ∨ ¬ ((𝑥𝐵𝑦𝐷) ∧ 𝑧 = 𝐹)))
139138a1d 25 . . . . . . . . . . . . . . . 16 (¬ ((((𝑥𝐴𝑥𝐵) ∧ (𝑦𝐶𝑦𝐷)) ∧ (𝑥𝐴 → (𝑦𝐶 → (𝑧 = 𝐸𝑧 = 𝐹)))) → (((𝑥𝐴𝑦𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥𝐵𝑦𝐷) ∧ 𝑧 = 𝐹))) → (¬ ¬ ((𝑥𝐵𝑦𝐷) ∧ 𝑧 = 𝐹) → (𝑧 = 𝐹 ∨ ¬ ((𝑥𝐵𝑦𝐷) ∧ 𝑧 = 𝐹))))
140103, 139cnfn2dd 37697 . . . . . . . . . . . . . . 15 (¬ ((((𝑥𝐴𝑥𝐵) ∧ (𝑦𝐶𝑦𝐷)) ∧ (𝑥𝐴 → (𝑦𝐶 → (𝑧 = 𝐸𝑧 = 𝐹)))) → (((𝑥𝐴𝑦𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥𝐵𝑦𝐷) ∧ 𝑧 = 𝐹))) → (¬ ¬ ((𝑥𝐵𝑦𝐷) ∧ 𝑧 = 𝐹) → 𝑧 = 𝐹))
141 tsbi3 37739 . . . . . . . . . . . . . . . . 17 (¬ ((((𝑥𝐴𝑥𝐵) ∧ (𝑦𝐶𝑦𝐷)) ∧ (𝑥𝐴 → (𝑦𝐶 → (𝑧 = 𝐸𝑧 = 𝐹)))) → (((𝑥𝐴𝑦𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥𝐵𝑦𝐷) ∧ 𝑧 = 𝐹))) → ((𝑧 = 𝐸 ∨ ¬ 𝑧 = 𝐹) ∨ ¬ (𝑧 = 𝐸𝑧 = 𝐹)))
142141a1d 25 . . . . . . . . . . . . . . . 16 (¬ ((((𝑥𝐴𝑥𝐵) ∧ (𝑦𝐶𝑦𝐷)) ∧ (𝑥𝐴 → (𝑦𝐶 → (𝑧 = 𝐸𝑧 = 𝐹)))) → (((𝑥𝐴𝑦𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥𝐵𝑦𝐷) ∧ 𝑧 = 𝐹))) → (¬ ¬ ((𝑥𝐵𝑦𝐷) ∧ 𝑧 = 𝐹) → ((𝑧 = 𝐸 ∨ ¬ 𝑧 = 𝐹) ∨ ¬ (𝑧 = 𝐸𝑧 = 𝐹))))
143142or32dd 37698 . . . . . . . . . . . . . . 15 (¬ ((((𝑥𝐴𝑥𝐵) ∧ (𝑦𝐶𝑦𝐷)) ∧ (𝑥𝐴 → (𝑦𝐶 → (𝑧 = 𝐸𝑧 = 𝐹)))) → (((𝑥𝐴𝑦𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥𝐵𝑦𝐷) ∧ 𝑧 = 𝐹))) → (¬ ¬ ((𝑥𝐵𝑦𝐷) ∧ 𝑧 = 𝐹) → ((𝑧 = 𝐸 ∨ ¬ (𝑧 = 𝐸𝑧 = 𝐹)) ∨ ¬ 𝑧 = 𝐹)))
144140, 143cnfn2dd 37697 . . . . . . . . . . . . . 14 (¬ ((((𝑥𝐴𝑥𝐵) ∧ (𝑦𝐶𝑦𝐷)) ∧ (𝑥𝐴 → (𝑦𝐶 → (𝑧 = 𝐸𝑧 = 𝐹)))) → (((𝑥𝐴𝑦𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥𝐵𝑦𝐷) ∧ 𝑧 = 𝐹))) → (¬ ¬ ((𝑥𝐵𝑦𝐷) ∧ 𝑧 = 𝐹) → (𝑧 = 𝐸 ∨ ¬ (𝑧 = 𝐸𝑧 = 𝐹))))
145137, 144cnf1dd 37694 . . . . . . . . . . . . 13 (¬ ((((𝑥𝐴𝑥𝐵) ∧ (𝑦𝐶𝑦𝐷)) ∧ (𝑥𝐴 → (𝑦𝐶 → (𝑧 = 𝐸𝑧 = 𝐹)))) → (((𝑥𝐴𝑦𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥𝐵𝑦𝐷) ∧ 𝑧 = 𝐹))) → (¬ ¬ ((𝑥𝐵𝑦𝐷) ∧ 𝑧 = 𝐹) → ¬ (𝑧 = 𝐸𝑧 = 𝐹)))
146125, 145contrd 37701 . . . . . . . . . . . 12 (¬ ((((𝑥𝐴𝑥𝐵) ∧ (𝑦𝐶𝑦𝐷)) ∧ (𝑥𝐴 → (𝑦𝐶 → (𝑧 = 𝐸𝑧 = 𝐹)))) → (((𝑥𝐴𝑦𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥𝐵𝑦𝐷) ∧ 𝑧 = 𝐹))) → ¬ ((𝑥𝐵𝑦𝐷) ∧ 𝑧 = 𝐹))
147146a1d 25 . . . . . . . . . . 11 (¬ ((((𝑥𝐴𝑥𝐵) ∧ (𝑦𝐶𝑦𝐷)) ∧ (𝑥𝐴 → (𝑦𝐶 → (𝑧 = 𝐸𝑧 = 𝐹)))) → (((𝑥𝐴𝑦𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥𝐵𝑦𝐷) ∧ 𝑧 = 𝐹))) → (¬ ⊥ → ¬ ((𝑥𝐵𝑦𝐷) ∧ 𝑧 = 𝐹)))
148127a1d 25 . . . . . . . . . . . . 13 (¬ ((((𝑥𝐴𝑥𝐵) ∧ (𝑦𝐶𝑦𝐷)) ∧ (𝑥𝐴 → (𝑦𝐶 → (𝑧 = 𝐸𝑧 = 𝐹)))) → (((𝑥𝐴𝑦𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥𝐵𝑦𝐷) ∧ 𝑧 = 𝐹))) → (¬ ⊥ → (¬ (((𝑥𝐴𝑦𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥𝐵𝑦𝐷) ∧ 𝑧 = 𝐹)) ∨ ((((𝑥𝐴𝑥𝐵) ∧ (𝑦𝐶𝑦𝐷)) ∧ (𝑥𝐴 → (𝑦𝐶 → (𝑧 = 𝐸𝑧 = 𝐹)))) → (((𝑥𝐴𝑦𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥𝐵𝑦𝐷) ∧ 𝑧 = 𝐹))))))
14995, 148cnf2dd 37695 . . . . . . . . . . . 12 (¬ ((((𝑥𝐴𝑥𝐵) ∧ (𝑦𝐶𝑦𝐷)) ∧ (𝑥𝐴 → (𝑦𝐶 → (𝑧 = 𝐸𝑧 = 𝐹)))) → (((𝑥𝐴𝑦𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥𝐵𝑦𝐷) ∧ 𝑧 = 𝐹))) → (¬ ⊥ → ¬ (((𝑥𝐴𝑦𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥𝐵𝑦𝐷) ∧ 𝑧 = 𝐹))))
15064a1d 25 . . . . . . . . . . . 12 (¬ ((((𝑥𝐴𝑥𝐵) ∧ (𝑦𝐶𝑦𝐷)) ∧ (𝑥𝐴 → (𝑦𝐶 → (𝑧 = 𝐸𝑧 = 𝐹)))) → (((𝑥𝐴𝑦𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥𝐵𝑦𝐷) ∧ 𝑧 = 𝐹))) → (¬ ⊥ → ((((𝑥𝐴𝑦𝐶) ∧ 𝑧 = 𝐸) ∨ ((𝑥𝐵𝑦𝐷) ∧ 𝑧 = 𝐹)) ∨ (((𝑥𝐴𝑦𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥𝐵𝑦𝐷) ∧ 𝑧 = 𝐹)))))
151149, 150cnf2dd 37695 . . . . . . . . . . 11 (¬ ((((𝑥𝐴𝑥𝐵) ∧ (𝑦𝐶𝑦𝐷)) ∧ (𝑥𝐴 → (𝑦𝐶 → (𝑧 = 𝐸𝑧 = 𝐹)))) → (((𝑥𝐴𝑦𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥𝐵𝑦𝐷) ∧ 𝑧 = 𝐹))) → (¬ ⊥ → (((𝑥𝐴𝑦𝐶) ∧ 𝑧 = 𝐸) ∨ ((𝑥𝐵𝑦𝐷) ∧ 𝑧 = 𝐹))))
152147, 151cnf2dd 37695 . . . . . . . . . 10 (¬ ((((𝑥𝐴𝑥𝐵) ∧ (𝑦𝐶𝑦𝐷)) ∧ (𝑥𝐴 → (𝑦𝐶 → (𝑧 = 𝐸𝑧 = 𝐹)))) → (((𝑥𝐴𝑦𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥𝐵𝑦𝐷) ∧ 𝑧 = 𝐹))) → (¬ ⊥ → ((𝑥𝐴𝑦𝐶) ∧ 𝑧 = 𝐸)))
15361a1d 25 . . . . . . . . . 10 (¬ ((((𝑥𝐴𝑥𝐵) ∧ (𝑦𝐶𝑦𝐷)) ∧ (𝑥𝐴 → (𝑦𝐶 → (𝑧 = 𝐸𝑧 = 𝐹)))) → (((𝑥𝐴𝑦𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥𝐵𝑦𝐷) ∧ 𝑧 = 𝐹))) → (¬ ⊥ → ((𝑥𝐴𝑦𝐶) ∨ ¬ ((𝑥𝐴𝑦𝐶) ∧ 𝑧 = 𝐸))))
154152, 153cnfn2dd 37697 . . . . . . . . 9 (¬ ((((𝑥𝐴𝑥𝐵) ∧ (𝑦𝐶𝑦𝐷)) ∧ (𝑥𝐴 → (𝑦𝐶 → (𝑧 = 𝐸𝑧 = 𝐹)))) → (((𝑥𝐴𝑦𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥𝐵𝑦𝐷) ∧ 𝑧 = 𝐹))) → (¬ ⊥ → (𝑥𝐴𝑦𝐶)))
155 tsan3 37747 . . . . . . . . . 10 (¬ ((((𝑥𝐴𝑥𝐵) ∧ (𝑦𝐶𝑦𝐷)) ∧ (𝑥𝐴 → (𝑦𝐶 → (𝑧 = 𝐸𝑧 = 𝐹)))) → (((𝑥𝐴𝑦𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥𝐵𝑦𝐷) ∧ 𝑧 = 𝐹))) → (𝑦𝐶 ∨ ¬ (𝑥𝐴𝑦𝐶)))
156155a1d 25 . . . . . . . . 9 (¬ ((((𝑥𝐴𝑥𝐵) ∧ (𝑦𝐶𝑦𝐷)) ∧ (𝑥𝐴 → (𝑦𝐶 → (𝑧 = 𝐸𝑧 = 𝐹)))) → (((𝑥𝐴𝑦𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥𝐵𝑦𝐷) ∧ 𝑧 = 𝐹))) → (¬ ⊥ → (𝑦𝐶 ∨ ¬ (𝑥𝐴𝑦𝐶))))
157154, 156cnfn2dd 37697 . . . . . . . 8 (¬ ((((𝑥𝐴𝑥𝐵) ∧ (𝑦𝐶𝑦𝐷)) ∧ (𝑥𝐴 → (𝑦𝐶 → (𝑧 = 𝐸𝑧 = 𝐹)))) → (((𝑥𝐴𝑦𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥𝐵𝑦𝐷) ∧ 𝑧 = 𝐹))) → (¬ ⊥ → 𝑦𝐶))
158 tsan3 37747 . . . . . . . . . . . 12 (¬ ((((𝑥𝐴𝑥𝐵) ∧ (𝑦𝐶𝑦𝐷)) ∧ (𝑥𝐴 → (𝑦𝐶 → (𝑧 = 𝐸𝑧 = 𝐹)))) → (((𝑥𝐴𝑦𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥𝐵𝑦𝐷) ∧ 𝑧 = 𝐹))) → (𝑧 = 𝐸 ∨ ¬ ((𝑥𝐴𝑦𝐶) ∧ 𝑧 = 𝐸)))
159158a1d 25 . . . . . . . . . . 11 (¬ ((((𝑥𝐴𝑥𝐵) ∧ (𝑦𝐶𝑦𝐷)) ∧ (𝑥𝐴 → (𝑦𝐶 → (𝑧 = 𝐸𝑧 = 𝐹)))) → (((𝑥𝐴𝑦𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥𝐵𝑦𝐷) ∧ 𝑧 = 𝐹))) → (¬ ⊥ → (𝑧 = 𝐸 ∨ ¬ ((𝑥𝐴𝑦𝐶) ∧ 𝑧 = 𝐸))))
160152, 159cnfn2dd 37697 . . . . . . . . . 10 (¬ ((((𝑥𝐴𝑥𝐵) ∧ (𝑦𝐶𝑦𝐷)) ∧ (𝑥𝐴 → (𝑦𝐶 → (𝑧 = 𝐸𝑧 = 𝐹)))) → (((𝑥𝐴𝑦𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥𝐵𝑦𝐷) ∧ 𝑧 = 𝐹))) → (¬ ⊥ → 𝑧 = 𝐸))
16194, 81sylibd 238 . . . . . . . . . . . . 13 (¬ ((((𝑥𝐴𝑥𝐵) ∧ (𝑦𝐶𝑦𝐷)) ∧ (𝑥𝐴 → (𝑦𝐶 → (𝑧 = 𝐸𝑧 = 𝐹)))) → (((𝑥𝐴𝑦𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥𝐵𝑦𝐷) ∧ 𝑧 = 𝐹))) → (¬ ⊥ → 𝑥𝐵))
162157, 116sylibd 238 . . . . . . . . . . . . 13 (¬ ((((𝑥𝐴𝑥𝐵) ∧ (𝑦𝐶𝑦𝐷)) ∧ (𝑥𝐴 → (𝑦𝐶 → (𝑧 = 𝐸𝑧 = 𝐹)))) → (((𝑥𝐴𝑦𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥𝐵𝑦𝐷) ∧ 𝑧 = 𝐹))) → (¬ ⊥ → 𝑦𝐷))
163161, 162jcad 511 . . . . . . . . . . . 12 (¬ ((((𝑥𝐴𝑥𝐵) ∧ (𝑦𝐶𝑦𝐷)) ∧ (𝑥𝐴 → (𝑦𝐶 → (𝑧 = 𝐸𝑧 = 𝐹)))) → (((𝑥𝐴𝑦𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥𝐵𝑦𝐷) ∧ 𝑧 = 𝐹))) → (¬ ⊥ → (𝑥𝐵𝑦𝐷)))
164 tsan1 37745 . . . . . . . . . . . . . 14 (¬ ((((𝑥𝐴𝑥𝐵) ∧ (𝑦𝐶𝑦𝐷)) ∧ (𝑥𝐴 → (𝑦𝐶 → (𝑧 = 𝐸𝑧 = 𝐹)))) → (((𝑥𝐴𝑦𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥𝐵𝑦𝐷) ∧ 𝑧 = 𝐹))) → ((¬ (𝑥𝐵𝑦𝐷) ∨ ¬ 𝑧 = 𝐹) ∨ ((𝑥𝐵𝑦𝐷) ∧ 𝑧 = 𝐹)))
165164a1d 25 . . . . . . . . . . . . 13 (¬ ((((𝑥𝐴𝑥𝐵) ∧ (𝑦𝐶𝑦𝐷)) ∧ (𝑥𝐴 → (𝑦𝐶 → (𝑧 = 𝐸𝑧 = 𝐹)))) → (((𝑥𝐴𝑦𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥𝐵𝑦𝐷) ∧ 𝑧 = 𝐹))) → (¬ ⊥ → ((¬ (𝑥𝐵𝑦𝐷) ∨ ¬ 𝑧 = 𝐹) ∨ ((𝑥𝐵𝑦𝐷) ∧ 𝑧 = 𝐹))))
166147, 165cnf2dd 37695 . . . . . . . . . . . 12 (¬ ((((𝑥𝐴𝑥𝐵) ∧ (𝑦𝐶𝑦𝐷)) ∧ (𝑥𝐴 → (𝑦𝐶 → (𝑧 = 𝐸𝑧 = 𝐹)))) → (((𝑥𝐴𝑦𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥𝐵𝑦𝐷) ∧ 𝑧 = 𝐹))) → (¬ ⊥ → (¬ (𝑥𝐵𝑦𝐷) ∨ ¬ 𝑧 = 𝐹)))
167163, 166cnfn1dd 37696 . . . . . . . . . . 11 (¬ ((((𝑥𝐴𝑥𝐵) ∧ (𝑦𝐶𝑦𝐷)) ∧ (𝑥𝐴 → (𝑦𝐶 → (𝑧 = 𝐸𝑧 = 𝐹)))) → (((𝑥𝐴𝑦𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥𝐵𝑦𝐷) ∧ 𝑧 = 𝐹))) → (¬ ⊥ → ¬ 𝑧 = 𝐹))
168 tsbi4 37740 . . . . . . . . . . . . 13 (¬ ((((𝑥𝐴𝑥𝐵) ∧ (𝑦𝐶𝑦𝐷)) ∧ (𝑥𝐴 → (𝑦𝐶 → (𝑧 = 𝐸𝑧 = 𝐹)))) → (((𝑥𝐴𝑦𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥𝐵𝑦𝐷) ∧ 𝑧 = 𝐹))) → ((¬ 𝑧 = 𝐸𝑧 = 𝐹) ∨ ¬ (𝑧 = 𝐸𝑧 = 𝐹)))
169168a1d 25 . . . . . . . . . . . 12 (¬ ((((𝑥𝐴𝑥𝐵) ∧ (𝑦𝐶𝑦𝐷)) ∧ (𝑥𝐴 → (𝑦𝐶 → (𝑧 = 𝐸𝑧 = 𝐹)))) → (((𝑥𝐴𝑦𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥𝐵𝑦𝐷) ∧ 𝑧 = 𝐹))) → (¬ ⊥ → ((¬ 𝑧 = 𝐸𝑧 = 𝐹) ∨ ¬ (𝑧 = 𝐸𝑧 = 𝐹))))
170169or32dd 37698 . . . . . . . . . . 11 (¬ ((((𝑥𝐴𝑥𝐵) ∧ (𝑦𝐶𝑦𝐷)) ∧ (𝑥𝐴 → (𝑦𝐶 → (𝑧 = 𝐸𝑧 = 𝐹)))) → (((𝑥𝐴𝑦𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥𝐵𝑦𝐷) ∧ 𝑧 = 𝐹))) → (¬ ⊥ → ((¬ 𝑧 = 𝐸 ∨ ¬ (𝑧 = 𝐸𝑧 = 𝐹)) ∨ 𝑧 = 𝐹)))
171167, 170cnf2dd 37695 . . . . . . . . . 10 (¬ ((((𝑥𝐴𝑥𝐵) ∧ (𝑦𝐶𝑦𝐷)) ∧ (𝑥𝐴 → (𝑦𝐶 → (𝑧 = 𝐸𝑧 = 𝐹)))) → (((𝑥𝐴𝑦𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥𝐵𝑦𝐷) ∧ 𝑧 = 𝐹))) → (¬ ⊥ → (¬ 𝑧 = 𝐸 ∨ ¬ (𝑧 = 𝐸𝑧 = 𝐹))))
172160, 171cnfn1dd 37696 . . . . . . . . 9 (¬ ((((𝑥𝐴𝑥𝐵) ∧ (𝑦𝐶𝑦𝐷)) ∧ (𝑥𝐴 → (𝑦𝐶 → (𝑧 = 𝐸𝑧 = 𝐹)))) → (((𝑥𝐴𝑦𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥𝐵𝑦𝐷) ∧ 𝑧 = 𝐹))) → (¬ ⊥ → ¬ (𝑧 = 𝐸𝑧 = 𝐹)))
173 tsim1 37734 . . . . . . . . . . 11 (¬ ((((𝑥𝐴𝑥𝐵) ∧ (𝑦𝐶𝑦𝐷)) ∧ (𝑥𝐴 → (𝑦𝐶 → (𝑧 = 𝐸𝑧 = 𝐹)))) → (((𝑥𝐴𝑦𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥𝐵𝑦𝐷) ∧ 𝑧 = 𝐹))) → ((¬ 𝑦𝐶 ∨ (𝑧 = 𝐸𝑧 = 𝐹)) ∨ ¬ (𝑦𝐶 → (𝑧 = 𝐸𝑧 = 𝐹))))
174173a1d 25 . . . . . . . . . 10 (¬ ((((𝑥𝐴𝑥𝐵) ∧ (𝑦𝐶𝑦𝐷)) ∧ (𝑥𝐴 → (𝑦𝐶 → (𝑧 = 𝐸𝑧 = 𝐹)))) → (((𝑥𝐴𝑦𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥𝐵𝑦𝐷) ∧ 𝑧 = 𝐹))) → (¬ ⊥ → ((¬ 𝑦𝐶 ∨ (𝑧 = 𝐸𝑧 = 𝐹)) ∨ ¬ (𝑦𝐶 → (𝑧 = 𝐸𝑧 = 𝐹)))))
175174or32dd 37698 . . . . . . . . 9 (¬ ((((𝑥𝐴𝑥𝐵) ∧ (𝑦𝐶𝑦𝐷)) ∧ (𝑥𝐴 → (𝑦𝐶 → (𝑧 = 𝐸𝑧 = 𝐹)))) → (((𝑥𝐴𝑦𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥𝐵𝑦𝐷) ∧ 𝑧 = 𝐹))) → (¬ ⊥ → ((¬ 𝑦𝐶 ∨ ¬ (𝑦𝐶 → (𝑧 = 𝐸𝑧 = 𝐹))) ∨ (𝑧 = 𝐸𝑧 = 𝐹))))
176172, 175cnf2dd 37695 . . . . . . . 8 (¬ ((((𝑥𝐴𝑥𝐵) ∧ (𝑦𝐶𝑦𝐷)) ∧ (𝑥𝐴 → (𝑦𝐶 → (𝑧 = 𝐸𝑧 = 𝐹)))) → (((𝑥𝐴𝑦𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥𝐵𝑦𝐷) ∧ 𝑧 = 𝐹))) → (¬ ⊥ → (¬ 𝑦𝐶 ∨ ¬ (𝑦𝐶 → (𝑧 = 𝐸𝑧 = 𝐹)))))
177157, 176cnfn1dd 37696 . . . . . . 7 (¬ ((((𝑥𝐴𝑥𝐵) ∧ (𝑦𝐶𝑦𝐷)) ∧ (𝑥𝐴 → (𝑦𝐶 → (𝑧 = 𝐸𝑧 = 𝐹)))) → (((𝑥𝐴𝑦𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥𝐵𝑦𝐷) ∧ 𝑧 = 𝐹))) → (¬ ⊥ → ¬ (𝑦𝐶 → (𝑧 = 𝐸𝑧 = 𝐹))))
178101, 177contrd 37701 . . . . . 6 (¬ ((((𝑥𝐴𝑥𝐵) ∧ (𝑦𝐶𝑦𝐷)) ∧ (𝑥𝐴 → (𝑦𝐶 → (𝑧 = 𝐸𝑧 = 𝐹)))) → (((𝑥𝐴𝑦𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥𝐵𝑦𝐷) ∧ 𝑧 = 𝐹))) → ⊥)
179178efald2 37682 . . . . 5 ((((𝑥𝐴𝑥𝐵) ∧ (𝑦𝐶𝑦𝐷)) ∧ (𝑥𝐴 → (𝑦𝐶 → (𝑧 = 𝐸𝑧 = 𝐹)))) → (((𝑥𝐴𝑦𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥𝐵𝑦𝐷) ∧ 𝑧 = 𝐹)))
180179alimi 1805 . . . 4 (∀𝑧(((𝑥𝐴𝑥𝐵) ∧ (𝑦𝐶𝑦𝐷)) ∧ (𝑥𝐴 → (𝑦𝐶 → (𝑧 = 𝐸𝑧 = 𝐹)))) → ∀𝑧(((𝑥𝐴𝑦𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥𝐵𝑦𝐷) ∧ 𝑧 = 𝐹)))
1811802alimi 1806 . . 3 (∀𝑥𝑦𝑧(((𝑥𝐴𝑥𝐵) ∧ (𝑦𝐶𝑦𝐷)) ∧ (𝑥𝐴 → (𝑦𝐶 → (𝑧 = 𝐸𝑧 = 𝐹)))) → ∀𝑥𝑦𝑧(((𝑥𝐴𝑦𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥𝐵𝑦𝐷) ∧ 𝑧 = 𝐹)))
182 oprabbi 37765 . . 3 (∀𝑥𝑦𝑧(((𝑥𝐴𝑦𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥𝐵𝑦𝐷) ∧ 𝑧 = 𝐹)) → {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐶) ∧ 𝑧 = 𝐸)} = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐵𝑦𝐷) ∧ 𝑧 = 𝐹)})
18358, 181, 1823syl 18 . 2 (((𝐴 = 𝐵𝐶 = 𝐷) ∧ ∀𝑥𝐴𝑦𝐶 𝐸 = 𝐹) → {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐶) ∧ 𝑧 = 𝐸)} = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐵𝑦𝐷) ∧ 𝑧 = 𝐹)})
184 df-mpo 7424 . 2 (𝑥𝐴, 𝑦𝐶𝐸) = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐶) ∧ 𝑧 = 𝐸)}
185 df-mpo 7424 . 2 (𝑥𝐵, 𝑦𝐷𝐹) = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐵𝑦𝐷) ∧ 𝑧 = 𝐹)}
186183, 184, 1853eqtr4g 2790 1 (((𝐴 = 𝐵𝐶 = 𝐷) ∧ ∀𝑥𝐴𝑦𝐶 𝐸 = 𝐹) → (𝑥𝐴, 𝑦𝐶𝐸) = (𝑥𝐵, 𝑦𝐷𝐹))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 394  wo 845  wal 1531   = wceq 1533  wfal 1545  wcel 2098  wnfc 2875  wral 3050  {coprab 7420  cmpo 7421
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-13 2365  ax-ext 2696  ax-sep 5300  ax-nul 5307  ax-pr 5429
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ral 3051  df-rab 3419  df-v 3463  df-dif 3947  df-un 3949  df-ss 3961  df-nul 4323  df-if 4531  df-sn 4631  df-pr 4633  df-op 4637  df-oprab 7423  df-mpo 7424
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator