| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > jctl | Structured version Visualization version GIF version | ||
| Description: Inference conjoining a theorem to the left of a consequent. (Contributed by NM, 31-Dec-1993.) (Proof shortened by Wolf Lammen, 24-Oct-2012.) |
| Ref | Expression |
|---|---|
| jctl.1 | ⊢ 𝜓 |
| Ref | Expression |
|---|---|
| jctl | ⊢ (𝜑 → (𝜓 ∧ 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . 2 ⊢ (𝜑 → 𝜑) | |
| 2 | jctl.1 | . 2 ⊢ 𝜓 | |
| 3 | 1, 2 | jctil 519 | 1 ⊢ (𝜑 → (𝜓 ∧ 𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: mpanl1 700 mpanlr1 706 opeqsng 5466 relop 5817 odi 8546 ssfi 9143 endjudisj 10129 nn0n0n1ge2 12517 0mod 13871 expge1 14071 hashge2el2dif 14452 swrdccatin2 14701 swrd2lsw 14925 4dvdseven 16350 ndvdsp1 16388 istrkg2ld 28394 0wlkons1 30057 ococin 31344 cmbr4i 31537 iundifdif 32498 wevgblacfn 35103 nepss 35712 axextndbi 35799 ontopbas 36423 bj-elccinfty 37209 ctbssinf 37401 poimirlem16 37637 mblfinlem4 37661 ismblfin 37662 fiphp3d 42814 onmcl 43327 omabs2 43328 eelT01 44707 eel0T1 44708 un01 44785 dirkercncf 46112 nnsum3primes4 47793 vopnbgrelself 47859 line2x 48747 line2y 48748 |
| Copyright terms: Public domain | W3C validator |