Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > jctl | Structured version Visualization version GIF version |
Description: Inference conjoining a theorem to the left of a consequent. (Contributed by NM, 31-Dec-1993.) (Proof shortened by Wolf Lammen, 24-Oct-2012.) |
Ref | Expression |
---|---|
jctl.1 | ⊢ 𝜓 |
Ref | Expression |
---|---|
jctl | ⊢ (𝜑 → (𝜓 ∧ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . 2 ⊢ (𝜑 → 𝜑) | |
2 | jctl.1 | . 2 ⊢ 𝜓 | |
3 | 1, 2 | jctil 520 | 1 ⊢ (𝜑 → (𝜓 ∧ 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 |
This theorem is referenced by: mpanl1 697 mpanlr1 703 opeqsng 5417 relop 5759 odi 8410 ssfi 8956 endjudisj 9924 nn0n0n1ge2 12300 0mod 13622 expge1 13820 hashge2el2dif 14194 swrdccatin2 14442 swrd2lsw 14665 4dvdseven 16082 ndvdsp1 16120 istrkg2ld 26821 0wlkons1 28485 ococin 29770 cmbr4i 29963 iundifdif 30902 nepss 33662 axextndbi 33780 ontopbas 34617 bj-elccinfty 35385 ctbssinf 35577 poimirlem16 35793 mblfinlem4 35817 ismblfin 35818 fiphp3d 40641 eelT01 42331 eel0T1 42332 un01 42409 dirkercncf 43648 nnsum3primes4 45240 line2x 46100 line2y 46101 |
Copyright terms: Public domain | W3C validator |