MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  jctl Structured version   Visualization version   GIF version

Theorem jctl 524
Description: Inference conjoining a theorem to the left of a consequent. (Contributed by NM, 31-Dec-1993.) (Proof shortened by Wolf Lammen, 24-Oct-2012.)
Hypothesis
Ref Expression
jctl.1 𝜓
Assertion
Ref Expression
jctl (𝜑 → (𝜓𝜑))

Proof of Theorem jctl
StepHypRef Expression
1 id 22 . 2 (𝜑𝜑)
2 jctl.1 . 2 𝜓
31, 2jctil 520 1 (𝜑 → (𝜓𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 397
This theorem is referenced by:  mpanl1  698  mpanlr1  704  opeqsng  5502  relop  5848  odi  8575  ssfi  9169  endjudisj  10159  nn0n0n1ge2  12535  0mod  13863  expge1  14061  hashge2el2dif  14437  swrdccatin2  14675  swrd2lsw  14899  4dvdseven  16312  ndvdsp1  16350  istrkg2ld  27700  0wlkons1  29363  ococin  30648  cmbr4i  30841  iundifdif  31781  nepss  34675  axextndbi  34764  ontopbas  35301  bj-elccinfty  36083  ctbssinf  36275  poimirlem16  36492  mblfinlem4  36516  ismblfin  36517  fiphp3d  41542  onmcl  42066  omabs2  42067  eelT01  43457  eel0T1  43458  un01  43535  dirkercncf  44809  nnsum3primes4  46442  line2x  47393  line2y  47394
  Copyright terms: Public domain W3C validator