Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > jctl | Structured version Visualization version GIF version |
Description: Inference conjoining a theorem to the left of a consequent. (Contributed by NM, 31-Dec-1993.) (Proof shortened by Wolf Lammen, 24-Oct-2012.) |
Ref | Expression |
---|---|
jctl.1 | ⊢ 𝜓 |
Ref | Expression |
---|---|
jctl | ⊢ (𝜑 → (𝜓 ∧ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . 2 ⊢ (𝜑 → 𝜑) | |
2 | jctl.1 | . 2 ⊢ 𝜓 | |
3 | 1, 2 | jctil 519 | 1 ⊢ (𝜑 → (𝜓 ∧ 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 |
This theorem is referenced by: mpanl1 696 mpanlr1 702 opeqsng 5411 relop 5748 odi 8372 ssfi 8918 endjudisj 9855 nn0n0n1ge2 12230 0mod 13550 expge1 13748 hashge2el2dif 14122 swrdccatin2 14370 swrd2lsw 14593 4dvdseven 16010 ndvdsp1 16048 istrkg2ld 26725 0wlkons1 28386 ococin 29671 cmbr4i 29864 iundifdif 30803 nepss 33564 axextndbi 33686 ontopbas 34544 bj-elccinfty 35312 ctbssinf 35504 poimirlem16 35720 mblfinlem4 35744 ismblfin 35745 fiphp3d 40557 eelT01 42220 eel0T1 42221 un01 42298 dirkercncf 43538 nnsum3primes4 45128 line2x 45988 line2y 45989 |
Copyright terms: Public domain | W3C validator |