| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > jctl | Structured version Visualization version GIF version | ||
| Description: Inference conjoining a theorem to the left of a consequent. (Contributed by NM, 31-Dec-1993.) (Proof shortened by Wolf Lammen, 24-Oct-2012.) |
| Ref | Expression |
|---|---|
| jctl.1 | ⊢ 𝜓 |
| Ref | Expression |
|---|---|
| jctl | ⊢ (𝜑 → (𝜓 ∧ 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . 2 ⊢ (𝜑 → 𝜑) | |
| 2 | jctl.1 | . 2 ⊢ 𝜓 | |
| 3 | 1, 2 | jctil 519 | 1 ⊢ (𝜑 → (𝜓 ∧ 𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: mpanl1 700 mpanlr1 706 opeqsng 5483 relop 5835 odi 8596 ssfi 9192 endjudisj 10188 nn0n0n1ge2 12574 0mod 13924 expge1 14122 hashge2el2dif 14503 swrdccatin2 14752 swrd2lsw 14976 4dvdseven 16397 ndvdsp1 16435 istrkg2ld 28444 0wlkons1 30107 ococin 31394 cmbr4i 31587 iundifdif 32548 wevgblacfn 35136 nepss 35740 axextndbi 35827 ontopbas 36451 bj-elccinfty 37237 ctbssinf 37429 poimirlem16 37665 mblfinlem4 37689 ismblfin 37690 fiphp3d 42809 onmcl 43322 omabs2 43323 eelT01 44702 eel0T1 44703 un01 44780 dirkercncf 46103 nnsum3primes4 47769 vopnbgrelself 47835 line2x 48701 line2y 48702 |
| Copyright terms: Public domain | W3C validator |