| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > jctl | Structured version Visualization version GIF version | ||
| Description: Inference conjoining a theorem to the left of a consequent. (Contributed by NM, 31-Dec-1993.) (Proof shortened by Wolf Lammen, 24-Oct-2012.) |
| Ref | Expression |
|---|---|
| jctl.1 | ⊢ 𝜓 |
| Ref | Expression |
|---|---|
| jctl | ⊢ (𝜑 → (𝜓 ∧ 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . 2 ⊢ (𝜑 → 𝜑) | |
| 2 | jctl.1 | . 2 ⊢ 𝜓 | |
| 3 | 1, 2 | jctil 519 | 1 ⊢ (𝜑 → (𝜓 ∧ 𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: mpanl1 700 mpanlr1 706 opeqsng 5443 relop 5790 odi 8494 ssfi 9082 endjudisj 10057 nn0n0n1ge2 12446 0mod 13803 expge1 14003 hashge2el2dif 14384 swrdccatin2 14633 swrd2lsw 14856 4dvdseven 16281 ndvdsp1 16319 istrkg2ld 28436 0wlkons1 30096 ococin 31383 cmbr4i 31576 iundifdif 32537 wevgblacfn 35141 nepss 35750 axextndbi 35837 ontopbas 36461 bj-elccinfty 37247 ctbssinf 37439 poimirlem16 37675 mblfinlem4 37699 ismblfin 37700 fiphp3d 42851 onmcl 43363 omabs2 43364 eelT01 44742 eel0T1 44743 un01 44820 dirkercncf 46144 nnsum3primes4 47818 vopnbgrelself 47885 line2x 48785 line2y 48786 |
| Copyright terms: Public domain | W3C validator |