| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > jctl | Structured version Visualization version GIF version | ||
| Description: Inference conjoining a theorem to the left of a consequent. (Contributed by NM, 31-Dec-1993.) (Proof shortened by Wolf Lammen, 24-Oct-2012.) |
| Ref | Expression |
|---|---|
| jctl.1 | ⊢ 𝜓 |
| Ref | Expression |
|---|---|
| jctl | ⊢ (𝜑 → (𝜓 ∧ 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . 2 ⊢ (𝜑 → 𝜑) | |
| 2 | jctl.1 | . 2 ⊢ 𝜓 | |
| 3 | 1, 2 | jctil 519 | 1 ⊢ (𝜑 → (𝜓 ∧ 𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: mpanl1 700 mpanlr1 706 opeqsng 5450 relop 5797 odi 8504 ssfi 9097 endjudisj 10082 nn0n0n1ge2 12470 0mod 13824 expge1 14024 hashge2el2dif 14405 swrdccatin2 14653 swrd2lsw 14877 4dvdseven 16302 ndvdsp1 16340 istrkg2ld 28423 0wlkons1 30083 ococin 31370 cmbr4i 31563 iundifdif 32524 wevgblacfn 35081 nepss 35690 axextndbi 35777 ontopbas 36401 bj-elccinfty 37187 ctbssinf 37379 poimirlem16 37615 mblfinlem4 37639 ismblfin 37640 fiphp3d 42792 onmcl 43304 omabs2 43305 eelT01 44684 eel0T1 44685 un01 44762 dirkercncf 46089 nnsum3primes4 47773 vopnbgrelself 47840 line2x 48740 line2y 48741 |
| Copyright terms: Public domain | W3C validator |