![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > jctl | Structured version Visualization version GIF version |
Description: Inference conjoining a theorem to the left of a consequent. (Contributed by NM, 31-Dec-1993.) (Proof shortened by Wolf Lammen, 24-Oct-2012.) |
Ref | Expression |
---|---|
jctl.1 | ⊢ 𝜓 |
Ref | Expression |
---|---|
jctl | ⊢ (𝜑 → (𝜓 ∧ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . 2 ⊢ (𝜑 → 𝜑) | |
2 | jctl.1 | . 2 ⊢ 𝜓 | |
3 | 1, 2 | jctil 520 | 1 ⊢ (𝜑 → (𝜓 ∧ 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 |
This theorem is referenced by: mpanl1 698 mpanlr1 704 opeqsng 5502 relop 5848 odi 8575 ssfi 9169 endjudisj 10159 nn0n0n1ge2 12535 0mod 13863 expge1 14061 hashge2el2dif 14437 swrdccatin2 14675 swrd2lsw 14899 4dvdseven 16312 ndvdsp1 16350 istrkg2ld 27700 0wlkons1 29363 ococin 30648 cmbr4i 30841 iundifdif 31781 nepss 34675 axextndbi 34764 ontopbas 35301 bj-elccinfty 36083 ctbssinf 36275 poimirlem16 36492 mblfinlem4 36516 ismblfin 36517 fiphp3d 41542 onmcl 42066 omabs2 42067 eelT01 43457 eel0T1 43458 un01 43535 dirkercncf 44809 nnsum3primes4 46442 line2x 47393 line2y 47394 |
Copyright terms: Public domain | W3C validator |