![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > jctl | Structured version Visualization version GIF version |
Description: Inference conjoining a theorem to the left of a consequent. (Contributed by NM, 31-Dec-1993.) (Proof shortened by Wolf Lammen, 24-Oct-2012.) |
Ref | Expression |
---|---|
jctl.1 | ⊢ 𝜓 |
Ref | Expression |
---|---|
jctl | ⊢ (𝜑 → (𝜓 ∧ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . 2 ⊢ (𝜑 → 𝜑) | |
2 | jctl.1 | . 2 ⊢ 𝜓 | |
3 | 1, 2 | jctil 519 | 1 ⊢ (𝜑 → (𝜓 ∧ 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 |
This theorem is referenced by: mpanl1 699 mpanlr1 705 opeqsng 5522 relop 5875 odi 8635 ssfi 9240 endjudisj 10238 nn0n0n1ge2 12620 0mod 13953 expge1 14150 hashge2el2dif 14529 swrdccatin2 14777 swrd2lsw 15001 4dvdseven 16421 ndvdsp1 16459 istrkg2ld 28486 0wlkons1 30153 ococin 31440 cmbr4i 31633 iundifdif 32585 wevgblacfn 35076 nepss 35680 axextndbi 35768 ontopbas 36394 bj-elccinfty 37180 ctbssinf 37372 poimirlem16 37596 mblfinlem4 37620 ismblfin 37621 fiphp3d 42775 onmcl 43293 omabs2 43294 eelT01 44682 eel0T1 44683 un01 44760 dirkercncf 46028 nnsum3primes4 47662 vopnbgrelself 47727 line2x 48488 line2y 48489 |
Copyright terms: Public domain | W3C validator |