![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > jctl | Structured version Visualization version GIF version |
Description: Inference conjoining a theorem to the left of a consequent. (Contributed by NM, 31-Dec-1993.) (Proof shortened by Wolf Lammen, 24-Oct-2012.) |
Ref | Expression |
---|---|
jctl.1 | ⊢ 𝜓 |
Ref | Expression |
---|---|
jctl | ⊢ (𝜑 → (𝜓 ∧ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . 2 ⊢ (𝜑 → 𝜑) | |
2 | jctl.1 | . 2 ⊢ 𝜓 | |
3 | 1, 2 | jctil 519 | 1 ⊢ (𝜑 → (𝜓 ∧ 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 |
This theorem is referenced by: mpanl1 700 mpanlr1 706 opeqsng 5513 relop 5864 odi 8616 ssfi 9212 endjudisj 10207 nn0n0n1ge2 12592 0mod 13939 expge1 14137 hashge2el2dif 14516 swrdccatin2 14764 swrd2lsw 14988 4dvdseven 16407 ndvdsp1 16445 istrkg2ld 28483 0wlkons1 30150 ococin 31437 cmbr4i 31630 iundifdif 32583 wevgblacfn 35093 nepss 35698 axextndbi 35786 ontopbas 36411 bj-elccinfty 37197 ctbssinf 37389 poimirlem16 37623 mblfinlem4 37647 ismblfin 37648 fiphp3d 42807 onmcl 43321 omabs2 43322 eelT01 44709 eel0T1 44710 un01 44787 dirkercncf 46063 nnsum3primes4 47713 vopnbgrelself 47779 line2x 48604 line2y 48605 |
Copyright terms: Public domain | W3C validator |