| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > jctl | Structured version Visualization version GIF version | ||
| Description: Inference conjoining a theorem to the left of a consequent. (Contributed by NM, 31-Dec-1993.) (Proof shortened by Wolf Lammen, 24-Oct-2012.) |
| Ref | Expression |
|---|---|
| jctl.1 | ⊢ 𝜓 |
| Ref | Expression |
|---|---|
| jctl | ⊢ (𝜑 → (𝜓 ∧ 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . 2 ⊢ (𝜑 → 𝜑) | |
| 2 | jctl.1 | . 2 ⊢ 𝜓 | |
| 3 | 1, 2 | jctil 519 | 1 ⊢ (𝜑 → (𝜓 ∧ 𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: mpanl1 700 mpanlr1 706 opeqsng 5446 relop 5794 odi 8500 ssfi 9089 endjudisj 10067 nn0n0n1ge2 12456 0mod 13808 expge1 14008 hashge2el2dif 14389 swrdccatin2 14638 swrd2lsw 14861 4dvdseven 16286 ndvdsp1 16324 istrkg2ld 28439 0wlkons1 30103 ococin 31390 cmbr4i 31583 iundifdif 32544 wevgblacfn 35174 nepss 35783 axextndbi 35867 ontopbas 36493 bj-elccinfty 37279 ctbssinf 37471 poimirlem16 37696 mblfinlem4 37720 ismblfin 37721 fiphp3d 42936 onmcl 43448 omabs2 43449 eelT01 44827 eel0T1 44828 un01 44905 dirkercncf 46229 nnsum3primes4 47912 vopnbgrelself 47979 line2x 48879 line2y 48880 |
| Copyright terms: Public domain | W3C validator |