Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > jctl | Structured version Visualization version GIF version |
Description: Inference conjoining a theorem to the left of a consequent. (Contributed by NM, 31-Dec-1993.) (Proof shortened by Wolf Lammen, 24-Oct-2012.) |
Ref | Expression |
---|---|
jctl.1 | ⊢ 𝜓 |
Ref | Expression |
---|---|
jctl | ⊢ (𝜑 → (𝜓 ∧ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . 2 ⊢ (𝜑 → 𝜑) | |
2 | jctl.1 | . 2 ⊢ 𝜓 | |
3 | 1, 2 | jctil 520 | 1 ⊢ (𝜑 → (𝜓 ∧ 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 |
This theorem is referenced by: mpanl1 697 mpanlr1 703 opeqsng 5447 relop 5792 odi 8481 ssfi 9038 endjudisj 10025 nn0n0n1ge2 12401 0mod 13723 expge1 13921 hashge2el2dif 14294 swrdccatin2 14540 swrd2lsw 14764 4dvdseven 16181 ndvdsp1 16219 istrkg2ld 27110 0wlkons1 28773 ococin 30058 cmbr4i 30251 iundifdif 31189 nepss 33959 axextndbi 34063 ontopbas 34713 bj-elccinfty 35498 ctbssinf 35690 poimirlem16 35906 mblfinlem4 35930 ismblfin 35931 fiphp3d 40911 omabs2 41325 eelT01 42660 eel0T1 42661 un01 42738 dirkercncf 43992 nnsum3primes4 45599 line2x 46459 line2y 46460 |
Copyright terms: Public domain | W3C validator |