![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > jctl | Structured version Visualization version GIF version |
Description: Inference conjoining a theorem to the left of a consequent. (Contributed by NM, 31-Dec-1993.) (Proof shortened by Wolf Lammen, 24-Oct-2012.) |
Ref | Expression |
---|---|
jctl.1 | ⊢ 𝜓 |
Ref | Expression |
---|---|
jctl | ⊢ (𝜑 → (𝜓 ∧ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . 2 ⊢ (𝜑 → 𝜑) | |
2 | jctl.1 | . 2 ⊢ 𝜓 | |
3 | 1, 2 | jctil 520 | 1 ⊢ (𝜑 → (𝜓 ∧ 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 |
This theorem is referenced by: mpanl1 698 mpanlr1 704 opeqsng 5503 relop 5850 odi 8581 ssfi 9175 endjudisj 10165 nn0n0n1ge2 12541 0mod 13869 expge1 14067 hashge2el2dif 14443 swrdccatin2 14681 swrd2lsw 14905 4dvdseven 16318 ndvdsp1 16356 istrkg2ld 27749 0wlkons1 29412 ococin 30699 cmbr4i 30892 iundifdif 31832 nepss 34762 axextndbi 34851 ontopbas 35405 bj-elccinfty 36187 ctbssinf 36379 poimirlem16 36596 mblfinlem4 36620 ismblfin 36621 fiphp3d 41645 onmcl 42169 omabs2 42170 eelT01 43560 eel0T1 43561 un01 43638 dirkercncf 44908 nnsum3primes4 46541 line2x 47524 line2y 47525 |
Copyright terms: Public domain | W3C validator |