| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > jctl | Structured version Visualization version GIF version | ||
| Description: Inference conjoining a theorem to the left of a consequent. (Contributed by NM, 31-Dec-1993.) (Proof shortened by Wolf Lammen, 24-Oct-2012.) |
| Ref | Expression |
|---|---|
| jctl.1 | ⊢ 𝜓 |
| Ref | Expression |
|---|---|
| jctl | ⊢ (𝜑 → (𝜓 ∧ 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . 2 ⊢ (𝜑 → 𝜑) | |
| 2 | jctl.1 | . 2 ⊢ 𝜓 | |
| 3 | 1, 2 | jctil 519 | 1 ⊢ (𝜑 → (𝜓 ∧ 𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: mpanl1 700 mpanlr1 706 opeqsng 5463 relop 5814 odi 8543 ssfi 9137 endjudisj 10122 nn0n0n1ge2 12510 0mod 13864 expge1 14064 hashge2el2dif 14445 swrdccatin2 14694 swrd2lsw 14918 4dvdseven 16343 ndvdsp1 16381 istrkg2ld 28387 0wlkons1 30050 ococin 31337 cmbr4i 31530 iundifdif 32491 wevgblacfn 35096 nepss 35705 axextndbi 35792 ontopbas 36416 bj-elccinfty 37202 ctbssinf 37394 poimirlem16 37630 mblfinlem4 37654 ismblfin 37655 fiphp3d 42807 onmcl 43320 omabs2 43321 eelT01 44700 eel0T1 44701 un01 44778 dirkercncf 46105 nnsum3primes4 47789 vopnbgrelself 47855 line2x 48743 line2y 48744 |
| Copyright terms: Public domain | W3C validator |