|   | Mathbox for Alan Sare | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > un2122 | Structured version Visualization version GIF version | ||
| Description: A deduction unionizing a non-unionized collection of virtual hypotheses. (Contributed by Alan Sare, 3-Dec-2015.) (Proof modification is discouraged.) (New usage is discouraged.) | 
| Ref | Expression | 
|---|---|
| un2122.1 | ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜓 ∧ 𝜓) → 𝜒) | 
| Ref | Expression | 
|---|---|
| un2122 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | 3anass 1094 | . . 3 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜓 ∧ 𝜓) ↔ ((𝜑 ∧ 𝜓) ∧ (𝜓 ∧ 𝜓))) | |
| 2 | anandir 677 | . . . 4 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜓) ↔ ((𝜑 ∧ 𝜓) ∧ (𝜓 ∧ 𝜓))) | |
| 3 | ancom 460 | . . . . 5 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜓) ↔ (𝜓 ∧ (𝜑 ∧ 𝜓))) | |
| 4 | anabs7 664 | . . . . 5 ⊢ ((𝜓 ∧ (𝜑 ∧ 𝜓)) ↔ (𝜑 ∧ 𝜓)) | |
| 5 | 3, 4 | bitri 275 | . . . 4 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜓) ↔ (𝜑 ∧ 𝜓)) | 
| 6 | 2, 5 | bitr3i 277 | . . 3 ⊢ (((𝜑 ∧ 𝜓) ∧ (𝜓 ∧ 𝜓)) ↔ (𝜑 ∧ 𝜓)) | 
| 7 | 1, 6 | bitri 275 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜓 ∧ 𝜓) ↔ (𝜑 ∧ 𝜓)) | 
| 8 | un2122.1 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜓 ∧ 𝜓) → 𝜒) | |
| 9 | 7, 8 | sylbir 235 | 1 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 | 
| This theorem is referenced by: suctrALT3 44949 | 
| Copyright terms: Public domain | W3C validator |