Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > un2122 | Structured version Visualization version GIF version |
Description: A deduction unionizing a non-unionized collection of virtual hypotheses. (Contributed by Alan Sare, 3-Dec-2015.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
un2122.1 | ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜓 ∧ 𝜓) → 𝜒) |
Ref | Expression |
---|---|
un2122 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3anass 1097 | . . 3 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜓 ∧ 𝜓) ↔ ((𝜑 ∧ 𝜓) ∧ (𝜓 ∧ 𝜓))) | |
2 | anandir 677 | . . . 4 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜓) ↔ ((𝜑 ∧ 𝜓) ∧ (𝜓 ∧ 𝜓))) | |
3 | ancom 464 | . . . . 5 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜓) ↔ (𝜓 ∧ (𝜑 ∧ 𝜓))) | |
4 | anabs7 664 | . . . . 5 ⊢ ((𝜓 ∧ (𝜑 ∧ 𝜓)) ↔ (𝜑 ∧ 𝜓)) | |
5 | 3, 4 | bitri 278 | . . . 4 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜓) ↔ (𝜑 ∧ 𝜓)) |
6 | 2, 5 | bitr3i 280 | . . 3 ⊢ (((𝜑 ∧ 𝜓) ∧ (𝜓 ∧ 𝜓)) ↔ (𝜑 ∧ 𝜓)) |
7 | 1, 6 | bitri 278 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜓 ∧ 𝜓) ↔ (𝜑 ∧ 𝜓)) |
8 | un2122.1 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜓 ∧ 𝜓) → 𝜒) | |
9 | 7, 8 | sylbir 238 | 1 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 ∧ w3a 1089 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 210 df-an 400 df-3an 1091 |
This theorem is referenced by: suctrALT3 42217 |
Copyright terms: Public domain | W3C validator |