Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfvd1ir Structured version   Visualization version   GIF version

Theorem dfvd1ir 44598
Description: Inference form of df-vd1 44595 with the virtual deduction as the assertion. (Contributed by Alan Sare, 14-Nov-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypothesis
Ref Expression
dfvd1ir.1 (𝜑𝜓)
Assertion
Ref Expression
dfvd1ir (   𝜑   ▶   𝜓   )

Proof of Theorem dfvd1ir
StepHypRef Expression
1 dfvd1ir.1 . 2 (𝜑𝜓)
2 df-vd1 44595 . 2 ((   𝜑   ▶   𝜓   ) ↔ (𝜑𝜓))
31, 2mpbir 231 1 (   𝜑   ▶   𝜓   )
Colors of variables: wff setvar class
Syntax hints:  wi 4  (   wvd1 44594
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-vd1 44595
This theorem is referenced by:  idn1  44599  vd01  44622  in2  44630  int2  44631  gen11nv  44642  gen12  44643  exinst01  44650  exinst11  44651  e1a  44652  el1  44653  e111  44699  e1111  44700  un0.1  44803  un10  44812  un01  44813  sbcoreleleqVD  44883  2uasbanhVD  44935
  Copyright terms: Public domain W3C validator