| Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dfvd1ir | Structured version Visualization version GIF version | ||
| Description: Inference form of df-vd1 44567 with the virtual deduction as the assertion. (Contributed by Alan Sare, 14-Nov-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| dfvd1ir.1 | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| dfvd1ir | ⊢ ( 𝜑 ▶ 𝜓 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfvd1ir.1 | . 2 ⊢ (𝜑 → 𝜓) | |
| 2 | df-vd1 44567 | . 2 ⊢ (( 𝜑 ▶ 𝜓 ) ↔ (𝜑 → 𝜓)) | |
| 3 | 1, 2 | mpbir 231 | 1 ⊢ ( 𝜑 ▶ 𝜓 ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ( wvd1 44566 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-vd1 44567 |
| This theorem is referenced by: idn1 44571 vd01 44594 in2 44602 int2 44603 gen11nv 44614 gen12 44615 exinst01 44622 exinst11 44623 e1a 44624 el1 44625 e111 44671 e1111 44672 un0.1 44775 un10 44784 un01 44785 sbcoreleleqVD 44855 2uasbanhVD 44907 |
| Copyright terms: Public domain | W3C validator |