![]() |
Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dfvd1ir | Structured version Visualization version GIF version |
Description: Inference form of df-vd1 43321 with the virtual deduction as the assertion. (Contributed by Alan Sare, 14-Nov-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
dfvd1ir.1 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
dfvd1ir | ⊢ ( 𝜑 ▶ 𝜓 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfvd1ir.1 | . 2 ⊢ (𝜑 → 𝜓) | |
2 | df-vd1 43321 | . 2 ⊢ (( 𝜑 ▶ 𝜓 ) ↔ (𝜑 → 𝜓)) | |
3 | 1, 2 | mpbir 230 | 1 ⊢ ( 𝜑 ▶ 𝜓 ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ( wvd1 43320 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-vd1 43321 |
This theorem is referenced by: idn1 43325 vd01 43348 in2 43356 int2 43357 gen11nv 43368 gen12 43369 exinst01 43376 exinst11 43377 e1a 43378 el1 43379 e111 43425 e1111 43426 un0.1 43530 un10 43539 un01 43540 sbcoreleleqVD 43610 2uasbanhVD 43662 |
Copyright terms: Public domain | W3C validator |