Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > dfvd1ir | Structured version Visualization version GIF version |
Description: Inference form of df-vd1 42143 with the virtual deduction as the assertion. (Contributed by Alan Sare, 14-Nov-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
dfvd1ir.1 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
dfvd1ir | ⊢ ( 𝜑 ▶ 𝜓 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfvd1ir.1 | . 2 ⊢ (𝜑 → 𝜓) | |
2 | df-vd1 42143 | . 2 ⊢ (( 𝜑 ▶ 𝜓 ) ↔ (𝜑 → 𝜓)) | |
3 | 1, 2 | mpbir 230 | 1 ⊢ ( 𝜑 ▶ 𝜓 ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ( wvd1 42142 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-vd1 42143 |
This theorem is referenced by: idn1 42147 vd01 42170 in2 42178 int2 42179 gen11nv 42190 gen12 42191 exinst01 42198 exinst11 42199 e1a 42200 el1 42201 e111 42247 e1111 42248 un0.1 42352 un10 42361 un01 42362 sbcoreleleqVD 42432 2uasbanhVD 42484 |
Copyright terms: Public domain | W3C validator |