Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfvd1ir Structured version   Visualization version   GIF version

Theorem dfvd1ir 43324
Description: Inference form of df-vd1 43321 with the virtual deduction as the assertion. (Contributed by Alan Sare, 14-Nov-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypothesis
Ref Expression
dfvd1ir.1 (𝜑𝜓)
Assertion
Ref Expression
dfvd1ir (   𝜑   ▶   𝜓   )

Proof of Theorem dfvd1ir
StepHypRef Expression
1 dfvd1ir.1 . 2 (𝜑𝜓)
2 df-vd1 43321 . 2 ((   𝜑   ▶   𝜓   ) ↔ (𝜑𝜓))
31, 2mpbir 230 1 (   𝜑   ▶   𝜓   )
Colors of variables: wff setvar class
Syntax hints:  wi 4  (   wvd1 43320
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-vd1 43321
This theorem is referenced by:  idn1  43325  vd01  43348  in2  43356  int2  43357  gen11nv  43368  gen12  43369  exinst01  43376  exinst11  43377  e1a  43378  el1  43379  e111  43425  e1111  43426  un0.1  43530  un10  43539  un01  43540  sbcoreleleqVD  43610  2uasbanhVD  43662
  Copyright terms: Public domain W3C validator