Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > dfvd1ir | Structured version Visualization version GIF version |
Description: Inference form of df-vd1 42079 with the virtual deduction as the assertion. (Contributed by Alan Sare, 14-Nov-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
dfvd1ir.1 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
dfvd1ir | ⊢ ( 𝜑 ▶ 𝜓 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfvd1ir.1 | . 2 ⊢ (𝜑 → 𝜓) | |
2 | df-vd1 42079 | . 2 ⊢ (( 𝜑 ▶ 𝜓 ) ↔ (𝜑 → 𝜓)) | |
3 | 1, 2 | mpbir 230 | 1 ⊢ ( 𝜑 ▶ 𝜓 ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ( wvd1 42078 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-vd1 42079 |
This theorem is referenced by: idn1 42083 vd01 42106 in2 42114 int2 42115 gen11nv 42126 gen12 42127 exinst01 42134 exinst11 42135 e1a 42136 el1 42137 e111 42183 e1111 42184 un0.1 42288 un10 42297 un01 42298 sbcoreleleqVD 42368 2uasbanhVD 42420 |
Copyright terms: Public domain | W3C validator |