Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfvd1ir Structured version   Visualization version   GIF version

Theorem dfvd1ir 43382
Description: Inference form of df-vd1 43379 with the virtual deduction as the assertion. (Contributed by Alan Sare, 14-Nov-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypothesis
Ref Expression
dfvd1ir.1 (𝜑𝜓)
Assertion
Ref Expression
dfvd1ir (   𝜑   ▶   𝜓   )

Proof of Theorem dfvd1ir
StepHypRef Expression
1 dfvd1ir.1 . 2 (𝜑𝜓)
2 df-vd1 43379 . 2 ((   𝜑   ▶   𝜓   ) ↔ (𝜑𝜓))
31, 2mpbir 230 1 (   𝜑   ▶   𝜓   )
Colors of variables: wff setvar class
Syntax hints:  wi 4  (   wvd1 43378
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-vd1 43379
This theorem is referenced by:  idn1  43383  vd01  43406  in2  43414  int2  43415  gen11nv  43426  gen12  43427  exinst01  43434  exinst11  43435  e1a  43436  el1  43437  e111  43483  e1111  43484  un0.1  43588  un10  43597  un01  43598  sbcoreleleqVD  43668  2uasbanhVD  43720
  Copyright terms: Public domain W3C validator