![]() |
Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dfvd1ir | Structured version Visualization version GIF version |
Description: Inference form of df-vd1 44009 with the virtual deduction as the assertion. (Contributed by Alan Sare, 14-Nov-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
dfvd1ir.1 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
dfvd1ir | ⊢ ( 𝜑 ▶ 𝜓 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfvd1ir.1 | . 2 ⊢ (𝜑 → 𝜓) | |
2 | df-vd1 44009 | . 2 ⊢ (( 𝜑 ▶ 𝜓 ) ↔ (𝜑 → 𝜓)) | |
3 | 1, 2 | mpbir 230 | 1 ⊢ ( 𝜑 ▶ 𝜓 ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ( wvd1 44008 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-vd1 44009 |
This theorem is referenced by: idn1 44013 vd01 44036 in2 44044 int2 44045 gen11nv 44056 gen12 44057 exinst01 44064 exinst11 44065 e1a 44066 el1 44067 e111 44113 e1111 44114 un0.1 44218 un10 44227 un01 44228 sbcoreleleqVD 44298 2uasbanhVD 44350 |
Copyright terms: Public domain | W3C validator |