| Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dfvd1ir | Structured version Visualization version GIF version | ||
| Description: Inference form of df-vd1 44560 with the virtual deduction as the assertion. (Contributed by Alan Sare, 14-Nov-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| dfvd1ir.1 | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| dfvd1ir | ⊢ ( 𝜑 ▶ 𝜓 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfvd1ir.1 | . 2 ⊢ (𝜑 → 𝜓) | |
| 2 | df-vd1 44560 | . 2 ⊢ (( 𝜑 ▶ 𝜓 ) ↔ (𝜑 → 𝜓)) | |
| 3 | 1, 2 | mpbir 231 | 1 ⊢ ( 𝜑 ▶ 𝜓 ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ( wvd1 44559 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-vd1 44560 |
| This theorem is referenced by: idn1 44564 vd01 44587 in2 44595 int2 44596 gen11nv 44607 gen12 44608 exinst01 44615 exinst11 44616 e1a 44617 el1 44618 e111 44664 e1111 44665 un0.1 44768 un10 44777 un01 44778 sbcoreleleqVD 44848 2uasbanhVD 44900 |
| Copyright terms: Public domain | W3C validator |