| Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dfvd1ir | Structured version Visualization version GIF version | ||
| Description: Inference form of df-vd1 44662 with the virtual deduction as the assertion. (Contributed by Alan Sare, 14-Nov-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| dfvd1ir.1 | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| dfvd1ir | ⊢ ( 𝜑 ▶ 𝜓 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfvd1ir.1 | . 2 ⊢ (𝜑 → 𝜓) | |
| 2 | df-vd1 44662 | . 2 ⊢ (( 𝜑 ▶ 𝜓 ) ↔ (𝜑 → 𝜓)) | |
| 3 | 1, 2 | mpbir 231 | 1 ⊢ ( 𝜑 ▶ 𝜓 ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ( wvd1 44661 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-vd1 44662 |
| This theorem is referenced by: idn1 44666 vd01 44689 in2 44697 int2 44698 gen11nv 44709 gen12 44710 exinst01 44717 exinst11 44718 e1a 44719 el1 44720 e111 44766 e1111 44767 un0.1 44870 un10 44879 un01 44880 sbcoreleleqVD 44950 2uasbanhVD 45002 |
| Copyright terms: Public domain | W3C validator |