![]() |
Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dfvd1ir | Structured version Visualization version GIF version |
Description: Inference form of df-vd1 39552 with the virtual deduction as the assertion. (Contributed by Alan Sare, 14-Nov-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
dfvd1ir.1 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
dfvd1ir | ⊢ ( 𝜑 ▶ 𝜓 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfvd1ir.1 | . 2 ⊢ (𝜑 → 𝜓) | |
2 | df-vd1 39552 | . 2 ⊢ (( 𝜑 ▶ 𝜓 ) ↔ (𝜑 → 𝜓)) | |
3 | 1, 2 | mpbir 223 | 1 ⊢ ( 𝜑 ▶ 𝜓 ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ( wvd1 39551 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 199 df-vd1 39552 |
This theorem is referenced by: idn1 39556 vd01 39588 in2 39596 int2 39597 gen11nv 39608 gen12 39609 exinst01 39616 exinst11 39617 e1a 39618 el1 39619 e111 39665 e1111 39666 un0.1 39771 un10 39780 un01 39781 sbcoreleleqVD 39851 2uasbanhVD 39903 |
Copyright terms: Public domain | W3C validator |