| Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > suctrALT3 | Structured version Visualization version GIF version | ||
| Description: The successor of a transitive class is transitive. suctrALT3 44889 is the completed proof in conventional notation of the Virtual Deduction proof https://us.metamath.org/other/completeusersproof/suctralt3vd.html 44889. It was completed manually. The potential for automated derivation from the VD proof exists. See wvd1 44534 for a description of Virtual Deduction. Some sub-theorems of the proof were completed using a unification deduction (e.g., the sub-theorem whose assertion is step 19 used jaoded 44531). Unification deductions employ Mario Carneiro's metavariable concept. Some sub-theorems were completed using a unification theorem (e.g., the sub-theorem whose assertion is step 24 used dftr2 5243) . (Contributed by Alan Sare, 3-Dec-2015.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| suctrALT3 | ⊢ (Tr 𝐴 → Tr suc 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sssucid 6445 | . . . . . . . . 9 ⊢ 𝐴 ⊆ suc 𝐴 | |
| 2 | id 22 | . . . . . . . . . 10 ⊢ (Tr 𝐴 → Tr 𝐴) | |
| 3 | id 22 | . . . . . . . . . . 11 ⊢ ((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ suc 𝐴) → (𝑧 ∈ 𝑦 ∧ 𝑦 ∈ suc 𝐴)) | |
| 4 | 3 | simpld 494 | . . . . . . . . . 10 ⊢ ((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ suc 𝐴) → 𝑧 ∈ 𝑦) |
| 5 | id 22 | . . . . . . . . . 10 ⊢ (𝑦 ∈ 𝐴 → 𝑦 ∈ 𝐴) | |
| 6 | 2, 4, 5 | trelded 44530 | . . . . . . . . 9 ⊢ ((Tr 𝐴 ∧ (𝑧 ∈ 𝑦 ∧ 𝑦 ∈ suc 𝐴) ∧ 𝑦 ∈ 𝐴) → 𝑧 ∈ 𝐴) |
| 7 | 1, 6 | sselid 3963 | . . . . . . . 8 ⊢ ((Tr 𝐴 ∧ (𝑧 ∈ 𝑦 ∧ 𝑦 ∈ suc 𝐴) ∧ 𝑦 ∈ 𝐴) → 𝑧 ∈ suc 𝐴) |
| 8 | 7 | 3expia 1121 | . . . . . . 7 ⊢ ((Tr 𝐴 ∧ (𝑧 ∈ 𝑦 ∧ 𝑦 ∈ suc 𝐴)) → (𝑦 ∈ 𝐴 → 𝑧 ∈ suc 𝐴)) |
| 9 | id 22 | . . . . . . . . . 10 ⊢ (𝑦 = 𝐴 → 𝑦 = 𝐴) | |
| 10 | eleq2 2822 | . . . . . . . . . . 11 ⊢ (𝑦 = 𝐴 → (𝑧 ∈ 𝑦 ↔ 𝑧 ∈ 𝐴)) | |
| 11 | 10 | biimpac 478 | . . . . . . . . . 10 ⊢ ((𝑧 ∈ 𝑦 ∧ 𝑦 = 𝐴) → 𝑧 ∈ 𝐴) |
| 12 | 4, 9, 11 | syl2an 596 | . . . . . . . . 9 ⊢ (((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ suc 𝐴) ∧ 𝑦 = 𝐴) → 𝑧 ∈ 𝐴) |
| 13 | 1, 12 | sselid 3963 | . . . . . . . 8 ⊢ (((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ suc 𝐴) ∧ 𝑦 = 𝐴) → 𝑧 ∈ suc 𝐴) |
| 14 | 13 | ex 412 | . . . . . . 7 ⊢ ((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ suc 𝐴) → (𝑦 = 𝐴 → 𝑧 ∈ suc 𝐴)) |
| 15 | 3 | simprd 495 | . . . . . . . 8 ⊢ ((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ suc 𝐴) → 𝑦 ∈ suc 𝐴) |
| 16 | elsuci 6432 | . . . . . . . 8 ⊢ (𝑦 ∈ suc 𝐴 → (𝑦 ∈ 𝐴 ∨ 𝑦 = 𝐴)) | |
| 17 | 15, 16 | syl 17 | . . . . . . 7 ⊢ ((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ suc 𝐴) → (𝑦 ∈ 𝐴 ∨ 𝑦 = 𝐴)) |
| 18 | 8, 14, 17 | jaoded 44531 | . . . . . 6 ⊢ (((Tr 𝐴 ∧ (𝑧 ∈ 𝑦 ∧ 𝑦 ∈ suc 𝐴)) ∧ (𝑧 ∈ 𝑦 ∧ 𝑦 ∈ suc 𝐴) ∧ (𝑧 ∈ 𝑦 ∧ 𝑦 ∈ suc 𝐴)) → 𝑧 ∈ suc 𝐴) |
| 19 | 18 | un2122 44755 | . . . . 5 ⊢ ((Tr 𝐴 ∧ (𝑧 ∈ 𝑦 ∧ 𝑦 ∈ suc 𝐴)) → 𝑧 ∈ suc 𝐴) |
| 20 | 19 | ex 412 | . . . 4 ⊢ (Tr 𝐴 → ((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ suc 𝐴) → 𝑧 ∈ suc 𝐴)) |
| 21 | 20 | alrimivv 1927 | . . 3 ⊢ (Tr 𝐴 → ∀𝑧∀𝑦((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ suc 𝐴) → 𝑧 ∈ suc 𝐴)) |
| 22 | dftr2 5243 | . . . 4 ⊢ (Tr suc 𝐴 ↔ ∀𝑧∀𝑦((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ suc 𝐴) → 𝑧 ∈ suc 𝐴)) | |
| 23 | 22 | biimpri 228 | . . 3 ⊢ (∀𝑧∀𝑦((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ suc 𝐴) → 𝑧 ∈ suc 𝐴) → Tr suc 𝐴) |
| 24 | 21, 23 | syl 17 | . 2 ⊢ (Tr 𝐴 → Tr suc 𝐴) |
| 25 | 24 | idiALT 44443 | 1 ⊢ (Tr 𝐴 → Tr suc 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∨ wo 847 ∧ w3a 1086 ∀wal 1537 = wceq 1539 ∈ wcel 2107 Tr wtr 5241 suc csuc 6367 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-v 3466 df-un 3938 df-ss 3950 df-sn 4609 df-uni 4890 df-tr 5242 df-suc 6371 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |