Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  suctrALT3 Structured version   Visualization version   GIF version

Theorem suctrALT3 42433
Description: The successor of a transitive class is transitive. suctrALT3 42433 is the completed proof in conventional notation of the Virtual Deduction proof https://us.metamath.org/other/completeusersproof/suctralt3vd.html 42433. It was completed manually. The potential for automated derivation from the VD proof exists. See wvd1 42078 for a description of Virtual Deduction. Some sub-theorems of the proof were completed using a unification deduction (e.g., the sub-theorem whose assertion is step 19 used jaoded 42075). Unification deductions employ Mario Carneiro's metavariable concept. Some sub-theorems were completed using a unification theorem (e.g., the sub-theorem whose assertion is step 24 used dftr2 5189) . (Contributed by Alan Sare, 3-Dec-2015.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
suctrALT3 (Tr 𝐴 → Tr suc 𝐴)

Proof of Theorem suctrALT3
Dummy variables 𝑧 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sssucid 6328 . . . . . . . . 9 𝐴 ⊆ suc 𝐴
2 id 22 . . . . . . . . . 10 (Tr 𝐴 → Tr 𝐴)
3 id 22 . . . . . . . . . . 11 ((𝑧𝑦𝑦 ∈ suc 𝐴) → (𝑧𝑦𝑦 ∈ suc 𝐴))
43simpld 494 . . . . . . . . . 10 ((𝑧𝑦𝑦 ∈ suc 𝐴) → 𝑧𝑦)
5 id 22 . . . . . . . . . 10 (𝑦𝐴𝑦𝐴)
62, 4, 5trelded 42074 . . . . . . . . 9 ((Tr 𝐴 ∧ (𝑧𝑦𝑦 ∈ suc 𝐴) ∧ 𝑦𝐴) → 𝑧𝐴)
71, 6sselid 3915 . . . . . . . 8 ((Tr 𝐴 ∧ (𝑧𝑦𝑦 ∈ suc 𝐴) ∧ 𝑦𝐴) → 𝑧 ∈ suc 𝐴)
873expia 1119 . . . . . . 7 ((Tr 𝐴 ∧ (𝑧𝑦𝑦 ∈ suc 𝐴)) → (𝑦𝐴𝑧 ∈ suc 𝐴))
9 id 22 . . . . . . . . . 10 (𝑦 = 𝐴𝑦 = 𝐴)
10 eleq2 2827 . . . . . . . . . . 11 (𝑦 = 𝐴 → (𝑧𝑦𝑧𝐴))
1110biimpac 478 . . . . . . . . . 10 ((𝑧𝑦𝑦 = 𝐴) → 𝑧𝐴)
124, 9, 11syl2an 595 . . . . . . . . 9 (((𝑧𝑦𝑦 ∈ suc 𝐴) ∧ 𝑦 = 𝐴) → 𝑧𝐴)
131, 12sselid 3915 . . . . . . . 8 (((𝑧𝑦𝑦 ∈ suc 𝐴) ∧ 𝑦 = 𝐴) → 𝑧 ∈ suc 𝐴)
1413ex 412 . . . . . . 7 ((𝑧𝑦𝑦 ∈ suc 𝐴) → (𝑦 = 𝐴𝑧 ∈ suc 𝐴))
153simprd 495 . . . . . . . 8 ((𝑧𝑦𝑦 ∈ suc 𝐴) → 𝑦 ∈ suc 𝐴)
16 elsuci 6317 . . . . . . . 8 (𝑦 ∈ suc 𝐴 → (𝑦𝐴𝑦 = 𝐴))
1715, 16syl 17 . . . . . . 7 ((𝑧𝑦𝑦 ∈ suc 𝐴) → (𝑦𝐴𝑦 = 𝐴))
188, 14, 17jaoded 42075 . . . . . 6 (((Tr 𝐴 ∧ (𝑧𝑦𝑦 ∈ suc 𝐴)) ∧ (𝑧𝑦𝑦 ∈ suc 𝐴) ∧ (𝑧𝑦𝑦 ∈ suc 𝐴)) → 𝑧 ∈ suc 𝐴)
1918un2122 42299 . . . . 5 ((Tr 𝐴 ∧ (𝑧𝑦𝑦 ∈ suc 𝐴)) → 𝑧 ∈ suc 𝐴)
2019ex 412 . . . 4 (Tr 𝐴 → ((𝑧𝑦𝑦 ∈ suc 𝐴) → 𝑧 ∈ suc 𝐴))
2120alrimivv 1932 . . 3 (Tr 𝐴 → ∀𝑧𝑦((𝑧𝑦𝑦 ∈ suc 𝐴) → 𝑧 ∈ suc 𝐴))
22 dftr2 5189 . . . 4 (Tr suc 𝐴 ↔ ∀𝑧𝑦((𝑧𝑦𝑦 ∈ suc 𝐴) → 𝑧 ∈ suc 𝐴))
2322biimpri 227 . . 3 (∀𝑧𝑦((𝑧𝑦𝑦 ∈ suc 𝐴) → 𝑧 ∈ suc 𝐴) → Tr suc 𝐴)
2421, 23syl 17 . 2 (Tr 𝐴 → Tr suc 𝐴)
2524idiALT 41986 1 (Tr 𝐴 → Tr suc 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 843  w3a 1085  wal 1537   = wceq 1539  wcel 2108  Tr wtr 5187  suc csuc 6253
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-v 3424  df-un 3888  df-in 3890  df-ss 3900  df-sn 4559  df-uni 4837  df-tr 5188  df-suc 6257
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator