Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > anandir | Structured version Visualization version GIF version |
Description: Distribution of conjunction over conjunction. (Contributed by NM, 24-Aug-1995.) |
Ref | Expression |
---|---|
anandir | ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) ↔ ((𝜑 ∧ 𝜒) ∧ (𝜓 ∧ 𝜒))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | anidm 565 | . . 3 ⊢ ((𝜒 ∧ 𝜒) ↔ 𝜒) | |
2 | 1 | anbi2i 623 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜒)) ↔ ((𝜑 ∧ 𝜓) ∧ 𝜒)) |
3 | an4 653 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜒)) ↔ ((𝜑 ∧ 𝜒) ∧ (𝜓 ∧ 𝜒))) | |
4 | 2, 3 | bitr3i 276 | 1 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) ↔ ((𝜑 ∧ 𝜒) ∧ (𝜓 ∧ 𝜒))) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 396 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 |
This theorem is referenced by: anandi3r 1102 disjxun 5072 fununi 6509 imadif 6518 elfzuzb 13250 frgr3v 28639 5oalem3 30018 5oalem5 30020 refrelredund4 36748 nzin 41936 un2122 42410 |
Copyright terms: Public domain | W3C validator |