MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  anabs7 Structured version   Visualization version   GIF version

Theorem anabs7 660
Description: Absorption into embedded conjunct. (Contributed by NM, 20-Jul-1996.) (Proof shortened by Wolf Lammen, 17-Nov-2013.)
Assertion
Ref Expression
anabs7 ((𝜓 ∧ (𝜑𝜓)) ↔ (𝜑𝜓))

Proof of Theorem anabs7
StepHypRef Expression
1 simpr 484 . . 3 ((𝜑𝜓) → 𝜓)
21pm4.71ri 560 . 2 ((𝜑𝜓) ↔ (𝜓 ∧ (𝜑𝜓)))
32bicomi 223 1 ((𝜓 ∧ (𝜑𝜓)) ↔ (𝜑𝜓))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 396
This theorem is referenced by:  prtlem15  36816  un2122  42299
  Copyright terms: Public domain W3C validator