Users' Mathboxes Mathbox for Anthony Hart < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  unisym1 Structured version   Visualization version   GIF version

Theorem unisym1 34539
Description: A symmetry with .

See negsym1 34533 for more information. (Contributed by Anthony Hart, 4-Sep-2011.) (Proof shortened by Mario Carneiro, 11-Dec-2016.)

Assertion
Ref Expression
unisym1 (∀𝑥𝑥⊥ → ∀𝑥𝜑)

Proof of Theorem unisym1
StepHypRef Expression
1 falim 1556 . . 3 (⊥ → ∀𝑥𝜑)
21sps 2180 . 2 (∀𝑥⊥ → ∀𝑥𝜑)
32sps 2180 1 (∀𝑥𝑥⊥ → ∀𝑥𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1537  wfal 1551
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-12 2173
This theorem depends on definitions:  df-bi 206  df-tru 1542  df-fal 1552  df-ex 1784
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator