| Mathbox for Anthony Hart |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > exisym1 | Structured version Visualization version GIF version | ||
| Description: A symmetry with ∃.
See negsym1 36459 for more information. (Contributed by Anthony Hart, 4-Sep-2011.) |
| Ref | Expression |
|---|---|
| exisym1 | ⊢ (∃𝑥∃𝑥⊥ → ∃𝑥𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfe1 2153 | . 2 ⊢ Ⅎ𝑥∃𝑥𝜑 | |
| 2 | falim 1558 | . . 3 ⊢ (⊥ → 𝜑) | |
| 3 | 2 | eximi 1836 | . 2 ⊢ (∃𝑥⊥ → ∃𝑥𝜑) |
| 4 | 1, 3 | exlimi 2220 | 1 ⊢ (∃𝑥∃𝑥⊥ → ∃𝑥𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ⊥wfal 1553 ∃wex 1780 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-10 2144 ax-12 2180 |
| This theorem depends on definitions: df-bi 207 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |