Mathbox for Wolf Lammen |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > wl-alanbii | Structured version Visualization version GIF version |
Description: This theorem extends alanimi 1820 to a biconditional. Recurrent usage stacks up more quantifiers. (Contributed by Wolf Lammen, 4-Oct-2019.) |
Ref | Expression |
---|---|
wl-alanbii.1 | ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) |
Ref | Expression |
---|---|
wl-alanbii | ⊢ (∀𝑥𝜑 ↔ (∀𝑥𝜓 ∧ ∀𝑥𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wl-alanbii.1 | . . 3 ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) | |
2 | 1 | albii 1823 | . 2 ⊢ (∀𝑥𝜑 ↔ ∀𝑥(𝜓 ∧ 𝜒)) |
3 | 19.26 1874 | . 2 ⊢ (∀𝑥(𝜓 ∧ 𝜒) ↔ (∀𝑥𝜓 ∧ ∀𝑥𝜒)) | |
4 | 2, 3 | bitri 274 | 1 ⊢ (∀𝑥𝜑 ↔ (∀𝑥𝜓 ∧ ∀𝑥𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 ∀wal 1537 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 |
This theorem depends on definitions: df-bi 206 df-an 396 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |