| Mathbox for Wolf Lammen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > wl-alanbii | Structured version Visualization version GIF version | ||
| Description: This theorem extends alanimi 1815 to a biconditional. Recurrent usage stacks up more quantifiers. (Contributed by Wolf Lammen, 4-Oct-2019.) |
| Ref | Expression |
|---|---|
| wl-alanbii.1 | ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) |
| Ref | Expression |
|---|---|
| wl-alanbii | ⊢ (∀𝑥𝜑 ↔ (∀𝑥𝜓 ∧ ∀𝑥𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wl-alanbii.1 | . . 3 ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) | |
| 2 | 1 | albii 1818 | . 2 ⊢ (∀𝑥𝜑 ↔ ∀𝑥(𝜓 ∧ 𝜒)) |
| 3 | 19.26 1869 | . 2 ⊢ (∀𝑥(𝜓 ∧ 𝜒) ↔ (∀𝑥𝜓 ∧ ∀𝑥𝜒)) | |
| 4 | 2, 3 | bitri 275 | 1 ⊢ (∀𝑥𝜑 ↔ (∀𝑥𝜓 ∧ ∀𝑥𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∀wal 1537 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |