|   | Mathbox for Wolf Lammen | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > wl-lem-moexsb | Structured version Visualization version GIF version | ||
| Description: The antecedent ∀𝑥(𝜑 → 𝑥 = 𝑧) relates to ∃*𝑥𝜑, but is
       better suited for usage in proofs.  Note that no distinct variable
       restriction is placed on 𝜑. This theorem provides a basic working step in proving theorems about ∃* or ∃!. (Contributed by Wolf Lammen, 3-Oct-2019.) | 
| Ref | Expression | 
|---|---|
| wl-lem-moexsb | ⊢ (∀𝑥(𝜑 → 𝑥 = 𝑧) → (∃𝑥𝜑 ↔ [𝑧 / 𝑥]𝜑)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | nfa1 2150 | . . 3 ⊢ Ⅎ𝑥∀𝑥(𝜑 → 𝑥 = 𝑧) | |
| 2 | nfs1v 2155 | . . 3 ⊢ Ⅎ𝑥[𝑧 / 𝑥]𝜑 | |
| 3 | sp 2182 | . . . . 5 ⊢ (∀𝑥(𝜑 → 𝑥 = 𝑧) → (𝜑 → 𝑥 = 𝑧)) | |
| 4 | ax12v2 2178 | . . . . 5 ⊢ (𝑥 = 𝑧 → (𝜑 → ∀𝑥(𝑥 = 𝑧 → 𝜑))) | |
| 5 | 3, 4 | syli 39 | . . . 4 ⊢ (∀𝑥(𝜑 → 𝑥 = 𝑧) → (𝜑 → ∀𝑥(𝑥 = 𝑧 → 𝜑))) | 
| 6 | sb6 2084 | . . . 4 ⊢ ([𝑧 / 𝑥]𝜑 ↔ ∀𝑥(𝑥 = 𝑧 → 𝜑)) | |
| 7 | 5, 6 | imbitrrdi 252 | . . 3 ⊢ (∀𝑥(𝜑 → 𝑥 = 𝑧) → (𝜑 → [𝑧 / 𝑥]𝜑)) | 
| 8 | 1, 2, 7 | exlimd 2217 | . 2 ⊢ (∀𝑥(𝜑 → 𝑥 = 𝑧) → (∃𝑥𝜑 → [𝑧 / 𝑥]𝜑)) | 
| 9 | spsbe 2081 | . 2 ⊢ ([𝑧 / 𝑥]𝜑 → ∃𝑥𝜑) | |
| 10 | 8, 9 | impbid1 225 | 1 ⊢ (∀𝑥(𝜑 → 𝑥 = 𝑧) → (∃𝑥𝜑 ↔ [𝑧 / 𝑥]𝜑)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 206 ∀wal 1537 ∃wex 1778 [wsb 2063 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-10 2140 ax-12 2176 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ex 1779 df-nf 1783 df-sb 2064 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |