Users' Mathboxes Mathbox for Wolf Lammen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  wl-lem-moexsb Structured version   Visualization version   GIF version

Theorem wl-lem-moexsb 35650
Description: The antecedent 𝑥(𝜑𝑥 = 𝑧) relates to ∃*𝑥𝜑, but is better suited for usage in proofs. Note that no distinct variable restriction is placed on 𝜑.

This theorem provides a basic working step in proving theorems about ∃* or ∃!. (Contributed by Wolf Lammen, 3-Oct-2019.)

Assertion
Ref Expression
wl-lem-moexsb (∀𝑥(𝜑𝑥 = 𝑧) → (∃𝑥𝜑 ↔ [𝑧 / 𝑥]𝜑))
Distinct variable group:   𝑥,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑧)

Proof of Theorem wl-lem-moexsb
StepHypRef Expression
1 nfa1 2150 . . 3 𝑥𝑥(𝜑𝑥 = 𝑧)
2 nfs1v 2155 . . 3 𝑥[𝑧 / 𝑥]𝜑
3 sp 2178 . . . . 5 (∀𝑥(𝜑𝑥 = 𝑧) → (𝜑𝑥 = 𝑧))
4 ax12v2 2175 . . . . 5 (𝑥 = 𝑧 → (𝜑 → ∀𝑥(𝑥 = 𝑧𝜑)))
53, 4syli 39 . . . 4 (∀𝑥(𝜑𝑥 = 𝑧) → (𝜑 → ∀𝑥(𝑥 = 𝑧𝜑)))
6 sb6 2089 . . . 4 ([𝑧 / 𝑥]𝜑 ↔ ∀𝑥(𝑥 = 𝑧𝜑))
75, 6syl6ibr 251 . . 3 (∀𝑥(𝜑𝑥 = 𝑧) → (𝜑 → [𝑧 / 𝑥]𝜑))
81, 2, 7exlimd 2214 . 2 (∀𝑥(𝜑𝑥 = 𝑧) → (∃𝑥𝜑 → [𝑧 / 𝑥]𝜑))
9 spsbe 2086 . 2 ([𝑧 / 𝑥]𝜑 → ∃𝑥𝜑)
108, 9impbid1 224 1 (∀𝑥(𝜑𝑥 = 𝑧) → (∃𝑥𝜑 ↔ [𝑧 / 𝑥]𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wal 1537  wex 1783  [wsb 2068
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-10 2139  ax-12 2173
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-ex 1784  df-nf 1788  df-sb 2069
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator